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a b s t r a c t 

Inspired by the human way of place understanding, we present a novel indoor place perception network 

to overcome: 1). the simplicity of existing methods that only use the image features of object regions 

to recognize the indoor place, 2). insufficient consideration of the semantic information about object at- 

tributes and states. By utilizing multi-modal information containing the image and natural language, the 

proposed method can comprehensively express the attributes, state, and relationships of objects which 

are beneficial for indoor place understanding and recognition. Specifically, we first present a natural lan- 

guage generation framework based on a Convolution Neural Network (CNN) and Long Short-Term Mem- 

ory (LSTM) to imitate the process of place understanding. Next, a Convolutional Auto-Encoder (CAE) and 

a mixed CNN-LSTM are proposed to extract image features and semantic features, respectively. Then, two 

different fusion strategies, namely feature-level fusion and object-level fusion, are designed to integrate 

different types of features and features from different objects. The category of the indoor place is finally 

recognized based on fused information. Comprehensive experiments are conducted on public datasets, 

and the results verify the effectiveness of the proposed place perception method based on linguistic cues. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Place perception is one of the essential issues in the artificial 

ntelligence field, which is mainly applied to image retrieval and 

nderstanding, or autonomous robot and drone. In the last few 

ears, the related researches [1–3] mainly focused on the concept 

f scene recognition or place classification using approaches from 

he perspective of image recognition and understanding. However, 

ost of these methods have some common drawbacks: (1) they 

ddress the place recognition as a simple image recognition prob- 

em without considering particular characteristics of place percep- 

ion, (2) these works usually ignore the high-level semantic infor- 

ation of objects and humans in a place image, which caused an 

nadequate feature representation for place perception. 

There are two fundamental differences between place percep- 

ion and scene recognition or place classification. First of all, the 
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oncept of the place refers to a space area in which people en- 

age in specific activities, and this space area is abstracted in peo- 

le’s mind according to certain clues and can be represented by 

ymbol labels [1] . Whereas for the concept of the scene, in some 

esearch on high-level scene perception [4] , it is typically defined 

often implicitly) as a semantically coherent view of a real-world 

nvironment comprising background elements and multiple fore- 

round objects arranged in a spatially specific manner. In compar- 

son, the conceptual scope of the scene is broader than the place. 

rom a conceptual point of view, some places ( e.g. the indoor place 

ike a bathroom, the outdoor place like a garden or the public 

lace like a cafeteria) can be regarded as scenes. However, not 

ll scene (such as village, house, and river) can be classified into 

laces. This difference is mainly because a place should be closely 

elated to demands and actions or states of humans, but a scene 

s just an aggregation of some objective entities without specific 

unctions. In another viewpoint, exploiting object entities as a clue 

o recognize the category of a place implicitly considers the con- 

ept of the place, that is, a place area should contain specific ob- 

ects with human-related functionality, which can be regarded as 

https://doi.org/10.1016/j.patcog.2020.107680
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107680&domain=pdf
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rior knowledge. Several related works [5–9] studied from the as- 

ect of the category distribution of objects contained in a place im- 

ge. However, merely considering the object category ignores much 

aluable information, especially in a complicated place containing 

any different types of objects. For example, “a man lies in bed 

nd works on a laptop” can roughly infer that this place might be 

 bedroom rather than an office, or “a stainless steel sink” might 

ppear in the kitchen rather than in the bathroom. More broadly, 

he relationship between people and objects, states or actions of 

umans as well as the object attributes play essential roles in the 

rediction of the place category. However, these clues are kinds of 

igh-level semantic information and hard to be formulated in an 

xplicit form so that they cause difficulties for place perception. 

The second difference is between the process of perception and 

ecognition. We argue that the procedure of the place perception 

n the human brain follows typically three steps: (1) try to analyze 

he visual information and detect the critical objects in an input 

mage, (2) use abstract symbols to describe the seen objects and 

rganize symbols into semantic knowledge, (3) try to combine this 

nowledge to infer the possible place and generate some ideas. 

hus, perception is not only to identify the category of a place 

ut also to fully understand the containing information, e.g. sym- 

ol attribute, spatial attribute, and semantic attribute. More specif- 

cally, the perception process can also answer some semantic ques- 

ions such as what kind of objects are present, what is happening 

n this place, or even what are the critical elements to the infer- 

nce of the place category. These are fundamental requirements for 

ervice robots and human-computer interaction applications. How- 

ver, current work merely addressed the label attribute problem of 

lace perception without considering more semantic information 

equired in the understanding process. Therefore, most methods 

egard it as a pattern recognition problem and use the classifica- 

ion model to solve it according to the type of information source 

nd its features. 

Considering those above two primary differences between place 

erception and scene classification, we intuitively believe that nat- 

ral language information might become a valid clue for model- 

ng feature representation in place perception. As a kind of sym- 

olic representation form, natural language information is more 

bstract and suitable for human understanding, which can also 

over more representative visual clues using non-redundant con- 

ents. Hence, linguistic information can adequately express the at- 

ributes, states, and relationships of objects in a place image. Ad- 

itionally, although natural language can represent high-level se- 

antic information, it also makes the information more ambigu- 

us. Therefore, place perception can not solely rely on natural lan- 

uage and still needs visual information to assist in the under- 

tanding process. 

The proposed method intends to mimic the human way of 

lace perception by employing the technology natural language 

eneration for obtaining more abundant and complementary se- 

antic cues, which is to boost the perception performance of the 

urrent method. The semantic cue has been widely considered 

n the recent place recognition technology. For example, Cheng 

t al. [8] proposed a feature representation method from the per- 

pective of object detection, called semantic descriptor with ob- 

ectness (SDO), to get the distribution of shallow semantic de- 

criptions between object and scene. Furthermore, Lopez-Cifuentes 

t al. [10] obtained the scene semantic representation by lever- 

ging on semantic segmentation and then combined them with 

mage features through a multi-modal CNN attention module. To 

liminate the similarity among different scene categories, related 

tudies change the core idea from discriminating single image in- 

ormation to fusing the semantic information of objects. How- 

ver, these similar methods still rely on simple semantic elements 

nd do not adequately consider the semantic attributes of objects. 
2 
herefore, to the best of our knowledge, this is the first work that 

sing the image caption technology to convert the visual modal- 

ty into its relevant linguistic modality and combines both cues for 

lace perception. 

The contribution of our work is fourfold: 

(1) We propose a multi-task deep neural network to realize the 

indoor place understanding and recognition together, which 

imitates and learns the process of place perception in a 

human-style. 

(2) From the perspective of multi-modal information transfor- 

mation and complementation, we propose an image caption- 

ing model to automatically generate natural language de- 

scriptions from place images, which is an additional infor- 

mation source to assist the decision-making in place recog- 

nition. 

(3) We propose a multi-modal feature extraction and fusion ar- 

chitecture based on a mixed-CNN-LSTM network that gath- 

ers both visual and linguistic features corresponding to 

instance-level and concept-level information, respectively. 

(4) We validate the effectiveness of the proposed strategy of 

using natural language descriptions to place perception 

through experiments on public image datasets, including Vi- 

sual Genome, SUN397, MIT-67, and Places2. 

This paper is organized as follows: Section 2 provides an 

verview of related work in indoor place perception, with a fo- 

us on place perception and image caption based on deep learn- 

ng methods. In Section 3 , we elaborate on the proposed approach 

o place perception. Section 4 describes the implementation details 

f our algorithm and reports the experimental results. Finally, we 

onclude our work in Section 5 . 

. Related work 

In this section, we briefly review two related topics: (1) place 

erception, and (2) image captioning. Specifically, we pay much 

ore attention to recent works based on deep learning. 

.1. Place perception 

Place perception in this paper contains two parts, namely, place 

nderstanding and place recognition. As explained in Section 1 , 

here is a difference between two concepts, and related studies 

ave only explored the second part of them. In some current re- 

earches, place perception is often addressed as a scene classifica- 

ion/recognition problem and dealt with image classification meth- 

ds. 

According to the characteristics of the modality, there are usu- 

lly two solutions to identify places, including image modality and 

ulti-modal information. For image modality only, earlier stud- 

es are conducted in the direction of image classification, retrieval 

11,12] and clustering [13,14] . These methods use artificially de- 

igned image features combined with a classifier for place image 

ecognition. For example, Juneja et al. [15] used the Histogram of 

riented Gradients (HOG) feature encoded by the Fisher vector to 

escribe the image regions. Similarly, Aziz et al. [16] constructed 

eature vectors by integrating Local Quinary Patterns (LQP), Bag of 

isual Words (BoW) and HOG. In [7] , the object-based probabilis- 

ic distribution was established by extracting Speeded Up Robust 

eatures (SURF). They all applied Support Vector Machines (SVM) 

o realize classification. However, the recognition performance of 

hese methods is unsatisfactory because the extracted features lack 

iscrimination when facing complex place images. 

On the other hand, due to the development of the deep neural 

etwork, various works try to exploit complex networks to learn 
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3

I

he image features from a large amount of data. Two types of fea- 

ures, including holistic features and local features of the image, 

re learned in these methods. In holistic feature representation, 

t regards an scene image as an integrated entity and extracts its 

lobal features. A comprehensive comparison of scene classifica- 

ion in [3] tested different network architectures on a dataset with 

ore than 10 million images. These approaches are easy to be de- 

igned as end-to-end models, and their improvement are also ben- 

fited from the network structure itself. However, in global features 

ased methods, the recognition accuracy of indoor scenes usually 

s lower than that of outdoor scenes. This poor performance is be- 

ause indoor places are more complicated than outdoor places in 

ost cases, both from the aspects of spatial structure and contain- 

ng objects and stuff. Therefore, there are two directions for im- 

rovement. The first is to design additional modules to increase 

he complexity of image feature representation, thereby optimizing 

he discriminant performance. For example, Xie et al. [17] added a 

isher vector function into VGG-19. Pan et al. [18] employed two 

esNets to extract foreground and background features of images. 

n [19] , three different kinds of networks were applied for extract- 

ng features of object regions and whole images. The second is to 

ocus on the local feature representation of elements constituting 

he scene image. In local feature representation, some studies rep- 

esent places by using object distribution or adding prior knowl- 

dge into their models. They either designed feature descriptors 

anually [2,6] or automatically extracted features using deep neu- 

al network (DNN) [9,20] . It is worth noting that the object infor- 

ation plays a significant role in place recognition, whether from 

he aspect of network structure or feature selection. Thus, many 

ethods base multi-modal models on the semantic information of 

bjects. 

For place recognition by multi-modal approaches, some re- 

earches try to enhance recognition performance by introducing 

dditional information source like depth cue [21,22] . When there is 

nly image modality, the main idea is utilizing linguistic cues gen- 

rated from local regions of the image. Since the semantic infor- 

ation cannot be obtained directly, it is necessary to employ other 

etworks for extracting semantic features. For example, In [23] , the 

OLOv2 method was used to generate Spatial-layout-maintained 

bject Semantics Features (SOSF) by Spatial Fisher Vectors (SFV). 

imilarly, Wang et al. [24] used VGG-19 networks to calculate Vec- 

ors of Semantically Aggregated Descriptors(VSAD). Once the se- 

antic features are obtained, the model can fuse the image fea- 

ures with them to better represent the inter-class diversity and 

ntra-class similarity of the place. 

Although the method of scene recognition based on the object 

lue has an noticeable effect on improving recognition accuracy, it 

till has the problem of indistinguishable for the human-centred 

cene image. In order to compensate for the missing information, 

e attempt to tackle this problem by using natural language to 

escribe human behaviour and state. 

As for the place understanding, some researchers convert it 

o image understanding problem and attempt to solve it using 

emantic segmentation [5,25] and object detection [26,27] tech- 

iques. For example, Li et al. [28] proposed a hierarchical gener- 

tive model to recognize and segment each object component in 

 scene. In [29] , a convolutional encoder-decoder with a Bayesian 

ramework is utilized for image segmentation. Choi et al. [30] pro- 

osed a method called 3D geometric phrases to combine object 

etection, layout estimation and scene classification together. Ad- 

itionally, some works such as [31,32] achieve pixel-level scenes 

nderstanding by using depth information to segment images se- 

antically. Since both semantic segmentation and object detection 

an only obtain the object and stuff categories, we attempt to use 

mage caption technology to extract more information for robust 

lace understanding. 
3 
.2. Image captioning 

The concept of image caption originates from literatures [33,34] . 

ts basic purpose is using natural language to describe the possible 

hings in the image, and further achieve a more understandable 

ay to express the image content. In recent research, some new 

etwork structures are proposed to improve the performance of 

he generation model using natural language fluency [35,36] , rich- 

ess [37,38] and accuracy [39–41] . In general, these methods use 

NN to extract the global or local features of the image and then 

pply the sequence generation model such as RNN and LSTM to 

enerate the corresponding natural language descriptions. To some 

xtent, it is a kind of mapping function that converts information 

rom the image domain to the natural language domain. Therefore, 

nspired by the dense caption method [37] , we propose to intro- 

uce linguistic features obtained by image captioning to assist the 

lace understanding. 

. The proposed place perception network 

.1. Overview of our model 

To fully exploit the benefits of both visual and linguistic infor- 

ation, we propose a novel deep neural network that fuses differ- 

nt image representations for indoor place perception. As shown 

n Fig. 1 , the pipeline of our proposed method is divided into four 

odules: region detection, image caption, feature extraction, and 

lace recognition. Specifically, we first detect objects in an input 

mage and extract its visual features, and then we convert the vi- 

ual information into natural language. This procedure is known 

s dense captioning [37] . Finally, we extract both features from the 

mage and its generated natural language and fuse the complemen- 

ary cues to predict the place category. Besides, we design each 

odule using a sub-DNN. By a combination of these sub-DNNs, 

e derive an end-to-end DNN for indoor place perception. Here 

e assume that the perceptual objects are all based on images as 

he information source. 

As mentioned previously, to realize the process of place under- 

tanding and recognition, we utilize the natural language to enrich 

he representation of objects and stuff in a place image. Addition- 

lly, both image features and linguistic features are equally consid- 

red for place perception in our method. Therefore, as illustrated 

n Fig. 1 , the proposed method is designed as a multi-task model. 

ince each part of the model has a distinct function, they need 

o be trained separately for making each module converge quickly 

nd perform well. On the other hand, although the entire network 

s not trained in an end-to-end manner, it can be connected and 

ne-tuned together. 

Specifically, as suggested in [37,38] , image captioning model 

an be designed as an end-to-end integrated neural network, so 

n the actual constructing process, the proposed model is merged 

nto three parts. The first part contains an object detection mod- 

le based on ResNet-50 [42] with region proposal network (RPN) 

43] and natural language generator based on LSTM. The object 

etector and natural language generator are trained together. The 

econd part is a convolutional auto-encoder extracting image fea- 

ures of object regions and a mixed-CNN-LSTM network [44] cap- 

uring the linguistic features. The last part fuses visual and linguis- 

ic features and then input them into a softmax classifier to predict 

he possible category of a place image. 

.2. Dense captioning 

.2.1. Region detection network 

The basic idea of dense captioning is to localize the Regions of 

nterest (RoIs) in an image and then express the ROIs in natural 
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Fig. 1. The pipeline of the proposed deep neural network for place perception. Our model architecture consists of four modules: (1) a region detection network; (2) a 

captioning network; (3) a feature extraction network and (4) a fusion and recognition network. 
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anguage form. This process is similar to object detection, but it 

eplaces the fixed number of object categories with plenty of vi- 

ual concepts described by natural language phrases [38] . In or- 

er to improve the detection accuracy, we apply ResNet-50 [42] as 

he backbone in our object detector and replace the last two lay- 

rs, i.e. fully connected layer and softmax layer with an average 

ooling layer. Additionally, to prevent feature map size from being 

oo small to obtain the tiny object regions by convolution anchors, 

s shown in Fig. 1 (1), the RPN [43] is connected with the third

ottleneck layer Conv_Block3 in ResNet-50 and a bilinear interpo- 

ation layer [45] , which is then fed into the fourth bottleneck layer 

onv_Block4 to get the same-sized image features of region propos- 

ls. 

Given an input image with a shape of 3 × W × H , the third bot-

leneck layer Conv_Block3 generates convolutional features of shape 

 × W 

′ × H 

′ , where W 

′ = 

⌊
W 

16 

⌋
, H 

′ = 

⌊
H 
16 

⌋
and C = 1024 according

o the structure of ResNet-50. Then RPN uses anchors centred at 

very grid of W 

′ × H 

′ feature maps with k (k = 12 in our method)

ifferent aspect ratios to predict region proposals by regressing off- 

ets. Finally, since there are W 

′ × H 

′ × k region proposals during 

raining, we need to sample them to obtain a mini-batch contain- 

ng B (B = 256) boxes with at most half of positive regions. Further, 

uring the inference stage, we use greedy non-maximum suppres- 

ion (NMS) based on the predicted detection scores to select the 

 

′ (B ′ = 300) most confident proposals. The sampling principle fol- 

ows the approach in [37] . 

These region features sampled by anchor boxes are fed into 

ilinear interpolation operator [45] to obtain the same size of 

eatures. Specifically, given an input feature map U c,i ′ , j ′ of shape 

 × W 

′ × H 

′ and a w a × h a anchor box centred at ( x a , y a ), the

ilinear interpolation utilizes a kernel of k (d) = max (0 , 1 − | d| ) to
alculate the interpolated elements in output feature map V c,i,j 

ith a shape of C × 14 × 14 as follows: 

 c,i, j = 

W 

′ ∑ 

i ′ =1 

H ′ ∑ 

j ′ =1 

U c,i ′ , j ′ k (i ′ − x i, j ) k ( j ′ − y i, j ) , (1) 

here ( x i,j , y i,j ) represents the coordinate of point ( i, j ) at output

eature map, V corresponds to the horizontal and vertical coordi- 

ates in input feature map and U is expressed as follows: 
 

 

 

x i, j = 

w a 

14 

(i + 0 . 5) − 0 . 5 + x a − w a 

2 

, 

y i, j = 

h a 

14 

( j + 0 . 5) − 0 . 5 + y a − h a 

2 

, 

(2) 

After bilinear interpolation, every proposal region outputs fea- 

ure maps with the same size. These feature maps convolve with 

he last bottleneck layer Conv_Block4 and perform average pooling, 

orming the final output with a shape of B × 2048. 
4 
Meanwhile, the box regression is adopted according to a pa- 

ameterization method in [43] . Given an anchor box with a size of 

 a × h a , centred at ( x a , y a ), RPN model predicts scalars ( t x , t y , t w 

,

 h ) giving normalized offsets and log-space scaling transforms, so 

hat the output region has a center at ( x, y ) and a shape of w × h

iven by Eq. (3) . 

x = x a + t x w a , y = y a + t y h a , 

 = w a exp (t w 

) , h = h a exp (t h ) , (3) 

.2.2. Captioning network 

After the detection network calculates the region features to- 

ether with their detection scores and bounding box offsets, fea- 

ures from each region are passed through a two-branch fully 

onnected layers followed by rectified linear units (ReLU) non- 

inearity. As suggested in [38] , if the bounding box offsets gener- 

ted from RPN are simultaneously fed into the LSTM during cap- 

ion generation, they will be predicted more precisely. According 

o this observation, we also adopt this joint inference module in 

ur framework. 

As for the natural language generation network, given a train- 

ng sequence of tokens [ s 1 , . . . , s T ] , we firstly utilize Word2Vec

ethod, also called word embedding [46,47] , based on the entire 

orpus of image annotations in Visual Genome dataset, which is 

o convert a word into a real number vector of dimension D emb . 

he number of token vocabulary is | V � | + 3 , where | V 

� | is the word

ocabulary size and the other three tokens represent unknown or 

pecial word, start-of-sentence and end-of-sentence, i.e. < UNK > , 

 SOS > and < EOS > . After processed by Word2Vec, the train- 

ng sequence can be converted to a tensor [ x 1 , . . . , x T ] . We add two

ore vectors in the training sequence, the first one x −1 is the re- 

ion feature vector from region detection network, and the other 

ne is x 0 = < SOS > . Then, the LSTM computes a sequence of hid-

en states h t and output vectors y t = f ( h t−1 , x t ) according to the 

ormula in [48] . 

At each test time, the output vector y t corresponds to the most 

ikely next token s t+1 at time t = 0 , . . . , T − 1 . Note that the output

 −1 is ignored and the last token must be y T = < EOS > . The output

f the LSTM is then evaluated by a fully connected layer with a 

oftmax function to obtain the probability vector p t , corresponding 

o each word y t . The dimensionality of the p t is | V � | + 3 , which

eflects the possible word position in the vocabulary. 

.2.3. Loss function 

Since we integrate the detection network and captioning net- 

ork into an entire model, the loss function in each network are 

lso combined for joint optimization of our framework. There are 

ve loss function terms: (1) detection scores loss L det : a two-class 

ross-entropy loss function for foreground and background regions. 
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Fig. 2. The details of the convolutional auto-encoder’s framework. 
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t needs to compute twice in RPN and fully connected layer in 

aption network, respectively; (2) bounding box offsets loss L bbox : 

 smoothed-L1 loss function defined in Eq. (6) . It needs to com- 

ute twice in RPN and LSTM of the captioning network, respec- 

ively; (3) captioning loss L cap : the average cross-entropy given in 

q. (7) , where x 
gt 
t is a logic vector reflecting the word position in

he vocabulary for each word in the ground truth phrases. Specif- 

cally, gt refers to the ground-truth label, N reg is the number of 

egion proposals, and N cap is the total number of output caption- 

ng words. The entire loss function L C is a combination of these 

ub-loss terms, where α = 1 . 0 , β = 1 . 0 and γ = 1 . 0 are reasonable

eights to balance each losses practically. 

 det = − 1 

N reg 

∑ 

i 

[ p gt 
i 

log p i + (1 − p gt 
i 
) log (1 − p i )] , (4)

 bbox = 

1 

N reg 

∑ 

i 

p gt 
i 

soomth L 1 (t i − t gt 
i 

) , (5) 

oomth L 1 (x ) = 

{
0 . 5 x 2 if | x | < 1 

| x | − 0 . 5 otherwise, 
(6) 

 cap = 

1 

N cap 

∑ 

i 

T ∑ 

t=1 

x gt 
t log p t , (7) 

 C = αL cap + βL det + γ L bbox , (8) 

.3. Feature extraction network 

Since we have obtained linguistic descriptions through the cap- 

ioning network, the place can be represented by extracting the 

emantic features, as shown in Fig. 1 (3-b). Although the semantic 

eature is usually a high-level abstract feature with significant dis- 

inctions, it lacks low-level image details such as color, texture, and 

dge. In our framework, as shown in Fig. 1 (3-a), we also design an-

ther network to extract low-level region image features. 

.3.1. Region image feature extraction network 

Noting that the mapping between an object and the place to 

hich it belongs is not unique, so the object region cannot asso- 

iate to an accurate label of place for training a neural network. 

hus, as demonstrated in Fig. 2 , a convolutional auto-encoder is 

dopted to capture the image feature. 

However, the deconvolutional operator [49,50] in the decoder 

as a significant problem of edge effect caused by padding with 

eros. Besides, as we use bilinear interpolation, expressed in 

q. (1) , to restore the size of the image feature, this upsampling 

peration can lead to the local averaging effect of pixels. In or- 

er to compensate for information discarded by the encoder, we 

odify the auto-encoder structure with an across-layers cascading 

ethod. As shown in Fig. 2 , the bilinear upsampling layers in the 

ecoder are added with the same-sized convolutional layers in the 

ncoder. 
5 
At training time, we use mean squared error, defined in Eq. (9) , 

s the loss function, where x ( i, j ) and 

̂ x (i, j) represent the ground

ruth image and restored image, respectively. Additionally, the re- 

ion image is resized into 224 × 224 to obtain the same size as an 

mage feature vector. 

 img = 

1 

N 

∑ 

(i, j) 

[ ̂  x (i, j) − x (i, j) ] 
2 
, (9) 

To ensure the symmetry of each feature layers between encoder 

nd decoder, The mean square error of the feature layer, defined in 

q. (10) , is added to the loss function as a regularization term: 

 img f = 

n −1 ∑ 

m =1 

1 

N m 

∑ 

(i m , j m ) 

[ D m 

(i m 

, j m 

) − P n −m 

(i m 

, j m 

) ] 
2 
, (10) 

here D m 

( i m 

, j m 

) is the feature map of the m th transposed con-

olutional layer in decoder, P n −m 

(i m 

, j m 

) is the feature map of 

he (n − m ) th max-pooling layer in encoder, and n represents the 

umber of convolutional operators. The final loss function of CAE 

s a weighted sum of L img and L imgf as shown in Eq. (11) , where

= 0 . 7 and β = 0 . 1 . Since the purpose of CAE is to extract im-

ge features, the training process only needs to restore the image 

oughly. 

 CAE = αL img + βL img f , (11) 

As shown in Fig. 3 , after 20 epochs of training, the region image

an be basically recovered, and the training session can be stopped. 

fter this process, the weights of CAE are stored as a pre-trained 

odel which is later fine-tuned with fusion and recognition net- 

orks. At test time, the input of the encoder is the region image 

enerated by the detection network and resized into 224 × 224. 

he output of the last average pooling layer in the encoder is then 

attened to a 4608-dimensional vector. Finally, the region image 

eature is input to three fully connected layers which reduce its 

imensionality to 128 to match with the semantic feature. 

.3.2. Semantic feature extraction network 

As shown in Fig. 4 , we propose a mixed CNN-LSTM model 

44] to extract the features of descriptive phrases for express- 

ng the implicit contents. Note that the ground truth descrip- 

ive phrases include a series of tokens, e.g. special symbols, nu- 

eric characters, punctuation, or meaningless auxiliary words 

stop words). These tokens need to be removed or modified be- 

ause they do not help train neural networks. Thus, the prepro- 

essing step includes: (1) Remove punctuation, extra spaces, and 

pecial symbols that do not affect the original semantic meaning of 

escriptive phrases. (2) Replace the numeric characters in phrases 

ith the corresponding words. (3) Remove stop words without 

hanging the original semantic meaning. 

Besides, the length of descriptive phrases needs to be fixed with 

he same size to satisfy the demand of data dimensionality in the 

eural network. According to the statistics of phrase length in Vi- 

ual Genome dataset [51] , we select a reasonable length parameter 

s L max _ len = 8 . For any normalized phrase, if its length is longer
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Fig. 3. Examples of ground truth region images (shown in the first row) and the recovered images through convolutional auto-encoder (shown in the second row). 

Fig. 4. The structure of the semantic feature extraction network. 

Fig. 5. An example of an image and their descriptive phrases that contain humans 

from the SubVisGen dataset. (Parts of phrases are omitted because of space limita- 

tion.). 
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Table 1 

The public datasets used in our model. 

Dataset Bath. Bed. Kit. Liv. Off. Total 

MIT-67 197 647 729 703 105 2381 

Places2 100 100 100 100 100 500 

SUN397 951 2083 1746 2361 136 7277 

SubVisGen 713 639 624 617 544 3137 
han L max _ len , we only keep its first L max _ len words. Otherwise, the 

hrase will be filled with zero until its length reaches L max _ len . 

After preprocessing step, the normalized phrases are converted 

nto word vector form using the Word2Vec method [46,47] . As a 

articular case, the filled zero is converted into a zero vector as a 

lace-holder without any meaning. The dimensions of both word 

ector and zero vector are consistent with the dimension D emb of 

ord vectors in the captioning network. Both the ground truth 

hrases used for training and phrases generated from the caption- 

ng network for testing are required to be preprocessed. 

The semantic feature extraction network consists of an LSTM, a 

onvolutional layer with ReLU as activation function, and a max- 

ooling layer for dimensionality reduction. Since the phrases are 

runed or filled with zero, the LSTM is designed for repairing and 

haring information in a whole phrase. The size of the hidden layer 

s 512, which is the same length of word vector and the parameter 

n forget gate is set to 0.5 to keep part of previous output informa-

ion. The final length of the semantic feature vector of a phrase is 

28. 

Since the semantic feature lacks association with an accurate 

abel either, we combine the semantic feature extraction network 

ith the fusion and recognition network to further train and fine- 

une our model. 

.4. Fusion and recognition network 

In the fusion and recognition network, we attempt to: (1) Fuse 

n object’s low-level image features with its high-level semantic 

eatures. (2) Fuse different objects’ features within the same image. 

3) Perform place recognition using fused features. 

In the feature fusion step, we propose two strategies, namely 

eature-level fusion and object-level fusion. Firstly, to solve the 

roblem of feature fusion with two different patterns, we use three 
6 
istinct operators to realize feature-level fusion, respectively and 

est their performance under the same condition. Our compared 

perators include 1). Hadamard product, denoted as �, which 

eans the element-wise multiplication, 2). element-wise addition 

enoted as �, and 3). the augmented operator denoted as [ · , · ], 

hich means the concatenation of two vectors. 

Secondly, for the object-level fusion, we use a convolutional 

ayer to combine the fused features from different objects together 

o obtain a comprehensive feature representation. Notably, we fuse 

he features of the first O top objects which have the highest de- 

ection scores. If there are less than O top detected objects in the 

mage, the existing objects are sampled repeatedly in the order of 

heir detection score until the number of objects reaches O top . Af- 

er object-level fusion, the object features tensor with a shape of 

 top × 128 can be converted into a 128-dimensional vector. 

Finally, a fully connected layer is utilized to reduce the feature 

imensionality to fit with categories of indoor places we focus on. 

he softmax function is used as a classifier and the cross-entropy 

unction defined in Eq. (12) is the loss function. 

 rec = − 1 

N I 

∑ 

i 

I label 
i log p(I logits 

i 
) , (12) 

here p(I 
logits 
i 

) represents the softmax value of the i th image cor- 

esponding to five types of indoor places and I label 
i 

is its ground 

ruth label expressed in one-hot encoding form. 

. Experiment 

We evaluate our place perception model on four public im- 

ge datasets including MIT-67 [52] , Places2 [3] , SUN397 [53] , and 

isual Genome [51] . Specifically, we choose five kinds of indoor 

laces, namely bathroom, bedroom, kitchen, living room, and of- 

ce, from all datasets for evaluation and Table 1 lists the total 

umber of samples from each category in these dataset. Since 

here is no clear place category label in Visual Genome dataset, we 

anually annotate labels for 3137 images to form the SubVisGen 

ataset. At the time of evaluation, we use all samples from the 

ubVisGen dataset to train the model and verify its performance 

n other datasets. Fig. 5 provides an example of a place image with 

ts descriptive phrases. 

The entire model is implemented using Tensorflow 1.12, and 

ll experiments are conducted on Dell PowerEdge T630 Intel Xeon 

PU Es-2650 v4@ 2.20 GHz x 48 processors with 64GB RAM and 

eForce GTX Titan X GPU, running on Ubuntu 16.04 system. 
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Fig. 6. Statistics of descriptive phrases generated from the captioning network on the entire SubVisGen dataset. (a) The histogram of the descriptive phrases’ number for 

five types of places. (b) The average, minimum and maximum values of the detection scores for the i th descriptive phrase in all samples. The horizontal axis represents the 

ordinal value of descriptive phrases. (The output phrases are sorted according to the detection scores.). 
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Table 3 

Classification accuracy of different fusion opera- 

tors on the test set of SubVisGen dataset (the size 

of object-level fusion is fixed to 16). 

Fusion operator � � [ · , · ] 

Accuracy(%) 92.34 85.01 78.79 
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.1. Parameter settings and training details 

For the region detection network described in Section 3.2 , the 

nput image is resized to have a longer side of 720 pixels. For the 

aptioning network, the method of Word2Vec [46,47] is trained 

n the whole descriptive phrases from the Visual Genome dataset, 

hich has a vocabulary of frequent 10K words and each word 

ector has the dimension of 512. The size of the sliding window 

s set to 5. Besides, we use the stochastic gradient descent opti- 

izer with a mini-batch size of 1. The learning rate is set to 0.001 

nd decreases 50% every 100K iterations, and momentum is set to 

.98. The whole region detection and the captioning network stops 

raining after 500K iterations. (almost 8 epochs). 

In the fusion and recognition network, there are two hyper- 

arameters, namely fusion operator and the number of objects, re- 

uired to be tuned according to the demand of feature-level fu- 

ion and object-level fusion. We choose the appropriate hyper- 

arameter through experimental tests. To determine a reasonable 

bject-level fusion size, we firstly count the number of phrases 

enerated by the captioning network. Usually, most of the images 

an be described by about 25 phrases. On the other hand, since 

e select the phrases according to the detection score, it is also 

n important reference index. If the detection score is too low, it 

ay be because the detected object is a background, or the con- 

dence of recognition accuracy is low. Therefore, we also consider 

he distribution of the detection score. Fig. 6 (b) shows that the av- 

rage score of the 25 th generated phrase is as low as 0.6, so the 

emaining descriptive phrases may not be available. Therefore, we 

est several different sizes of object-level fusion on the condition, 

iven the fusion operator as a Hadamard product, and the train- 

ng and test datasets remain consistent during the experiment. As 

hown in Table 2 , a reasonable object-level fusion size should not 

e too large or too small. Too small fusion size may miss object in-

ormation and cannot describe the entire image effectively. On the 

ther hand, too large fusion size may bring too much irrelevant 

nformation that decreases the recognition accuracy. Therefore, the 

bject-level fusion size is set to 16 as an appropriate choice. 

For fusion operators, we test three fusion methods and report 

xperimental results in Table 3 . It shows that the Hadamard prod- 
Table 2 

The classification accuracy on the test set when using different sizes of object-level 

fusion on the SubVisGen dataset (the operator of feature-level fusion is fixed as �). 

Size 4 8 12 16 20 24 28 

Accuracy(%) 75.93 87.18 91.17 92.34 89.27 88.21 86.83 

T

E

u

s

7 
ct outperforms other fusion operators. However, such results can- 

ot be explained explicitly by mathematical principles. We can 

nly intuitively argue that Hadamard product introduces spatial 

rojection, which can reduce feature dimensionality and benefit 

cene classification. 

We use the stochastic gradient descent optimizer with a learn- 

ng rate of 0.001 to train the fusion and recognition network and 

ne-tune the feature extraction network in 30 epochs. In the last 5 

pochs, the learning rate decreases every epoch with a decay rate 

f 0.9. Additionally, the L2-regularization is adopted in the convo- 

utional layers and fully connected layers of recognition network to 

mprove the generalization ability of our model. 

.2. Experimental results and analysis 

The proposed method is firstly evaluated under a 5-fold cross- 

alidation setting. In order to perform a fair comparison, the Sub- 

isGen dataset is evenly divided into five parts. Each fold evalua- 

ion uses one-fifth of data as a test set, and the remaining data are 

sed as a training set. Table 4 shows the evaluation results under 

he same conditions in each fold. All metrics are maintained at a 

igh level, and there is no significant fluctuation among different 

ach fold splittings, which indicates that the proposed method is 

alid and has satisfying generalization capability for datasets with 

neven distribution. 

Furthermore, we also compare the performance of different 

ublic datasets. Table 5 provides the experimental results of the 

roposed model on each dataset, and Table 6 explores the corre- 

ponding statistical results of each place category. The validation 

odel is obtained by training on all data from SubVisGen dataset. 
able 4 

valuation results of the proposed method on the SubVisGen dataset. The last col- 

mn shows the average value and standard deviation under 5-fold cross-validation 

etting. 

fold-1 fold-2 fold-3 flod-4 fold-5 average(std) 

F1(%) 92.14 89.93 91.56 90.52 93.50 91.58( ± 1.28) 

Accuracy(%) 92.34 90.27 91.39 90.59 93.78 91.67( ± 1.27) 
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Table 5 

Comparison of F1 and accuracy on each test dataset. 

Dataset MIT-67 Places2 SUN397 SubVisGen 

F1(%) 71.40 82.58 81.76 92.25 

Accuracy(%) 74.59 82.40 85.17 92.35 

Table 6 

Comparison of F1 on each categories. 

F1(%) Bath. Bed. Kit. Liv. Off. 

MIT-67 79.82 72.71 82.50 70.82 51.14 

Places2 91.79 86.02 85.71 72.27 77.11 

SUN397 90.60 84.34 88.06 83.04 62.79 

SubVisGen 97.32 92.52 93.95 85.95 91.50 

Fig. 7. Recognition results of samples with existing humans in images on SubVis- 

Gen dataset. 
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Table 7 

Ablation results for different backbones of the region detection 

module. 

Backbone Number of Parameters mAP Accuracy(%) 

VGG-16 ~ 4.7M 6.08 82.26 

ResNet-50 ~ 20.7M 8.29 92.34 

ResNet-101 ~ 40.0M 8.33 92.47 

Table 8 

Ablation results for different feature extraction networks. 

Model Image feature Semantic feature ResNet-50 (baseline) 

Accuracy(%) 63.87 86.26 76.31 
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From the above experimental results, we observe that: (1) The 

roposed method performs worse on MIT-67 dataset, compared 

ith other datasets. (2) Considering the test results among differ- 

nt places, the recognition results of the living room and office are 

lightly worse than those of the other categories. 

For the first phenomenon, most images in the MIT-67 dataset 

ave a lower resolution than those in other datasets, so it will 

ause difficulty for the model to detect more objects. The result 

lso shows that the proposed model has specific requirements for 

he resolution of the input image. For the other phenomenon, it is 

ecause living rooms and offices contain slightly more objects than 

n other places, which is also consistent with our common sense. 

his prior knowledge can be indirectly inferred from Fig. 6 (a). 

herefore, this leads to a common problem in most place recog- 

ition methods that use objects as a clue, i.e. , when there is too 

uch information such as categories, attributes, and relationships 

bout the objects, it may be challenging to identify the category of 

lace correctly. Since our method selects several objects in the or- 

er of detection score, it can not guarantee that all of the selected 

bjects are helpful for place recognition. 

.3. Ablation studies 

This section aims to analyze the influence of significant compo- 

ents that constitute the proposed method. First, the influence of 

he region detection module is discussed. Second, we evaluate the 

ffectiveness of two feature extraction network. Meanwhile, com- 

aring with the ResNet-50 baseline model, we consider the impact 

f the human cues on the performance of our model. Besides, the 

blation studies of fusion strategies, namely feature fusion and ob- 

ect fusion are analyzed in Section 4.2 , and all the ablation studies 
8 
re carried out using the SubVisGen dataset with the Top@1 accu- 

acy metric. 

.3.1. Influence of the region detection network 

Since the region detection network is the backbone of entire 

odel, the performance of the detection module directly affects 

he rest parts. Table 7 gives the results of three different backbones 

f the detection network. We refer to the work [37,42] to change 

he ResNet-50 into the VGG-16 and ResNet-101 as the feature ex- 

raction network. Because the region detection and captioning net- 

ork are designed as a whole part, we evaluate them jointly to 

ompare the performance, which has the same metric and test set- 

ings as [37] . 

Results indicate that the place recognition and understanding 

apabilities of deeper networks are a little better than the shal- 

ower networks. As Table 7 presents, compared with the VGG-16, 

he ResNet-50 generates more accurate natural language descrip- 

ions and detects the objects more in line with the ground-truth, 

hich is helpful to perceive the place image precisely. On the other 

and, compared with the ResNet-50, the ResNet-101 has less po- 

ential in improving performance (mAP and accuracy metrics in- 

rease by 0.04 and 0.13%, respectively). Because when the depth 

ize is sufficiently deep, the enhancement of depth has no signifi- 

ant effect on feature representation [42] . In the light of these ex- 

eriments, we utilize ResNet-50 architecture as a trade-off solution 

etween performance and complexity. 

.3.2. Influence of the feature extraction network 

We have performed three ablation studies on the influence of 

he feature extraction module. As shown in Table 8 , the first two 

olumns present the results of using the image or semantic fea- 

ures separately. These two experiments are performed with the 

ame model parameters and only reserving the object-level fusion 

ayer. Additionally, the last column presents the results of removing 

oth the region image and semantic feature extraction network. 

e use the ResNet-50 as a baseline model for place image clas- 

ification, which is derived from reference [42] and fine-tuned on 

he SubVisGen dataset. 

Results indicate that the semantic feature plays a more critical 

ole in inferring the place’s category, which is consistent with the 

heoretical analysis in Section 3.3 . On the other hand, compared 

ith the baseline model, the model using the image feature of ob- 

ects region has a significant decrease in the recognition accuracy. 

his phenomenon probably due to the lack of clear correspondence 

etween the place category and the object information, and the lo- 

al features are also more complex than the global, which leads to 

he difficulty in identification. 

Besides, considering the results of Tables 7 and 8 together, we 

otice that the LSTM network in the captioning module has the 

ost significant impact on the recognition process. If the LSTM can 
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Fig. 8. Examples of incorrect place perception. The bounding boxes and captions are sorted in the descending order of the detection score. 
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a  

e

eceive more precise image features of objects as the initial state 

rom the detection network, the results of place recognition and 

nderstand will be better. In another aspect, compared with the 

ingle module, the entire model results in a 28.47% and a 6.08% 

ncrease in term of accuracy with respect to the image feature and 

emantic feature. To some extent, the image features of objects are 

ery diverse but may be described by the same word. Therefore, 

e think that the intra-class similarity of place images is signif- 

cantly improved after represented by natural language, and the 

ole of image features is to enhance the difference in inter-class. 

Apart from the attributes and states of objects, the humans in 

he images are also our primary focus. To this end, we count the 

riginal images with existing human from the SubVisGen dataset, 

s well as the images with wrong recognition results in our model 

nd baseline model. Fig. 7 shows that our method has a good ef- 

ect on place perception based on the human clue. Specifically, it 

btains only 11.96% error rate, which is lower than 29.90% error 

ate in the baseline model. 

.4. Comparison to previous works 

Along this section, the proposed method is compared with 10 

ecent approaches, ranging from common CNN architectures to us- 

ng semantic information to drive scene recognition. Comparison is 

erformed on MIT-67 dataset. Since this dataset does not contain 

ny natural language descriptions of images, we use captioning 

odule pre-trained on Visual Genome dataset to generate them 

nd further compose a new MIT-67 dataset, which is used to train 

ur entire model. Unless explicitly mentioned, the results of all ap- 

roaches are extracted from their respective papers. 

Table 9 depicts the performance of each method. As these 

atasets are balanced, we only compare the Top@1 accuracy met- 

ic. All listed algorithms are based on CNNs (see the Backbone col- 

mn for details) and parts of them consider the semantic infor- 
Table 9 

State-of-the-art results on MIT-67 dataset. 

Method Backbone 

Zhou, et al. [3] VGG-16 

Xie, et al. [17] VGG-19 

Wang, et al. [24] 2 × VGG-19 

Wang, et al. [20] 2 × BN-Incept

Cheng, et al. [8] 2 × VGG-19 

Pan, et al. [18] ResNet-101 + R

Laranjeira, et al. [9] ResNet-50 + BiL

Sun, et al. [23] 2 × VGG-16+Y

López-Cifuentes, et al. [10] ResNet-18 + Res

Seong, et al. [19] 2 × SE-ResNeX

Ours ResNet-50 + LST

9 
ation (marked in the Semantic column). It is worth noting that 

he training datasets in Tables 5 and 9 are different. In the exper- 

ment of Table 5 , the model is trained on SubVisGen dataset and 

oes not carry out transfer learning on MIT-67 dataset, so it ob- 

ains unsatisfactory recognition results. One the other hand, the 

inguistic information of MIT-67 dataset in Table 9 is not from the 

round-truth annotations, but from the pre-trained model on Vi- 

ual Genome dataset, which is a transfer learning process. These 

wo results indicate that the proposed model is sensitive to seman- 

ic data, which is consistent with the conclusion in Section 4.3.2 . 

As the discussion in Section 2 , the listed methods are divided 

nto two main types. The first is from the perspective of image fea- 

ures, and these methods employ strategies of improving network 

tructures or feature representations. The second is to consider the 

ifferent information modalities, and the semantic information of 

bjects are mostly taken into account. To some extent, both of two 

ore ideas are beneficial to improving recognition performance. On 

he other hand, we notice from methods [10] and [19] that consid- 

ring object information can significantly increase the recognition 

ccuracy, whether from the perspective of image features or se- 

antic features. 

Compared with the methods using semantic information, our 

odel considers more complete linguistic cues rather than the dis- 

ribution of semantic labels for objects or regions, which makes 

he semantic features more abundant and accurate. Therefore, our 

pproach provides 4.50% and 4.16% performance increments over 

ethods [8] and [10] , and leads other methods by a relative mar- 

in in terms of recognition accuracy. 

.5. Limitations of the proposed method 

In addition to the above discussion, we show some failed ex- 

mples of our method in Fig. 8 , which mostly occur when the gen-

rated natural language description conflicts with the image. Sev- 
Semantic Accuracy(%) 

79.76 

82.24 

� 86.20 

ion 86.70 

� 86.76 

esNet-152 87.60 

STM 88.25 

OLOv2 � 89.51 

Net-50 � 87.10 

t-101 90.30 

M+CAE � 91.26 
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ral reasons are causing the misidentification of our method: (1) 

isclassification of the object category. As listed in Fig. 8 (a) and 

d), two important objects are classified into wrong categories, e.g. 

he computer monitor is recognized as “the tv is white” and the 

oothbrush is recognized as “a man is holding a pizza”. (2) Object 

nformation does not play a decisive role in perception. As listed in 

ig. 8 (b) and (c), since the recognized objects with high detection 

cores are not decisive for place understanding, it is difficult to de- 

ermine the category of place accurately. (3) The complexity and 

mbiguity of the original image. As shown in Fig. 8 (a) and (b), due

o the shooting range and angle of the camera, the objects con- 

ained in the image are inherently ambiguous, which cannot be 

olved by the model itself. 

In general, the main factor that limits the performance of the 

roposed model is whether the descriptive phrases generated from 

he captioning network are accurate, especially the category of the 

escribed objects. Although conflicts can lead to semantic infor- 

ation not complementing with image modality, and further cause 

ecognition errors, the ablation experiments suggest that two kinds 

f fusion strategies can ensure that linguistic cue has a certain 

redibility. Therefore, the performance of our model would im- 

rove if it can successfully detect and describe the objects that play 

 decisive role in the perception. 

. Conclusion 

In this paper, we attempt to leverage both semantic features of 

atural language and low-level image features to imitate the hu- 

an’s way of place understanding, so a novel deep neural net- 

ork structure is designed to realize indoor place perception. This 

ethod mainly employs the image captioning technology to gener- 

te linguistic clues and then fuses with the image features. Besides, 

wo fusion strategies, namely object-level fusion and feature-level 

usion, are proposed to realize the fusion of multi-modal informa- 

ion. 

Experimental results indicate that our method is valid for the 

lace perception. Besides, from the ablation study analysis, se- 

antic features significantly impact place recognition, and adding 

atural language information helps improve recognition accuracy. 

herefore, we think that considering natural language information 

s an effective way to solve the problem of place perception. 

Although the proposed method has acceptable performance, 

ome limitations still exist: (1) The captioning network’s perfor- 

ance needs to be improved because the accuracy and rich- 

ess of natural language information can influence the recognition 

rogress. (2) The model does not consider the decision problem 

hen information conflict occurs, leading to wrong recognition re- 

ults. For future work, we will focus on boosting the model per- 

ormance from the aspect of the above two shortcomings. Besides, 

he generalization performance of the proposed model needs fur- 

her improvement. 
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