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a b s t r a c t 

Indoor place recognition is a challenging problem because of the hard representation to complicated 

intra-class variations and inter-class similarities.This paper presents a new indoor place recognition 

scheme using deep neural network. Traditional representations of indoor place almost utilize image fea- 

ture to retain the spatial structure without considering the object’s semantic characteristics. However, we 

argue that the attributes, state and relationships of objects are much more helpful in indoor place recog- 

nition. In particular, we improve the recognition framework by utilizing Place Descriptors (PDs) in text 

from to connect different types of place information with their categories. Meanwhile, we analyse the 

ability of Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) for classification in 

natural language, for which we use them to process the indoor place descriptions. In addition, we im- 

prove the robustness of the designed deep neural network by combining a number of effective strategies, 

i.e. L2-regularization, data normalization, and proper calibration of key parameters. Compared with exist- 

ing state of the art, the proposed approach achieves well performance of 70.73%, 70.08% and 70.16% of 

accuracy, precision and recall on Visual Genome database respectively. Meanwhile, the accuracy becomes 

98.6% after adding voting mechanics. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Place recognition is one of the key issues in the semantic map

esearch area. Its fundamental purpose is to enable service robots

o perceive the environment via human understanding. In general,

 specific place can be defined by the inside objects and a series of

elated tasks occurring within the objects. Therefore, place can be

ecognized through the positional relationships and attributes of

bjects or even people’s state in the environment. To date, many

pproaches have been proposed from different aspects to address

his issue [1] . However, most existing methods just focus on visual

nformation itself without fully utilizing rich semantic contents in

mages. These image features only contain simple characteristics,

.g. texture, color, and geometric structure, so it is hard to accu-

ately determine the type of place. On the other hand, the current

esearch consider objects information only from single aspect, such

s category, positional relationships, etc. , which still unable to sim-

late the process of human perception of the place. These above

epresentation methods cannot describe a specific indoor place just
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ike the definition. Meanwhile, there is currently no effective way

o obtain the semantic characteristic of objects and it still face

reat difficulties. Therefore, it remains an open problem to extract

emantic cue for place recognition, because semantic information

s much more complex than visual information. 

As for description model of object’s attributes and relation-

hips, witnessing the recent rapid development of deep learning

pplication in image description and image captioning, some re-

earchers tend to represent objects’ information via a natural lan-

uage model. For example, hierarchical recurrent network was pre-

ented in [2] to generate entire paragraphs for image description.

u et al. [3] focused on the logical relationship between objects

n the image, and generated more clear semantic words. Similar

esearch [4,5] indicates that the attributes,status as well as rela-

ionships of objects in an image can be described by natural lan-

uage model, which brings a new way to the object representation

n place perception. 

Natural language is another form of information representation

hat aligns well with human cognition process of things. It can ig-

ore redundant information, and highlight the intrinsic attributes

f the objects. Therefore, converting image information into text

epresentation is beneficial for classification and inference. In this

aper, we innovatively consider both the objects properties and

ositional relationships in the place, which has a more theoretical

https://doi.org/10.1016/j.neucom.2019.02.065
http://www.ScienceDirect.com
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intuition than traditional methods that only considered image fea-

tures. Particularly, our approach learns a priori text-based knowl-

edge of object attributes, which is more helpful to judge the type

of place. 

Therefore, the contribution of this proposal is that we develop

a deep learning-based approach which merges the image features

of an indoor environment with the textual information converted

from the image domain using LSTM-CNN. With such extra textual

information, our new model does improve the recognition accuracy

of indoor scene significantly. 

This paper is organized as follows: Section 2 provides an

overview of related work in indoor place recognition, especially

the recent work using deep learning methods. In Section 3 , we

first analyse the basic scheme of place recognition, and then

present an algorithm based on the LSTM-CNN for processing

the objects information in text form. Section 4 introduces the

implementation details of our algorithm, including data processing

and model structure with training process. Section 5 reports

experimental results of our methods, with a detailed comparison

of other approaches. Finally, we conclude our work in Section 6 . 

2. Related work 

Indoor place recognition is still a complicated problem due

to the challenges of information integration and logical reasoning

caused by high variability of indoor environment. It is generally

considered that indoor place recognition mainly consists of three

basic steps, i.e. image acquisition, information representation, and

place classification. For information representation, different fea-

ture extraction methods have been proposed. 

Recently, Place recognition has been extensively studied in the

literature of computer vision. To address this problem, much effort

has been devoted to empoly more visual information like texture,

color, geometric information from infrared and/or laser, etc. For ex-

ample, Mozoz et al. [6] applied Adaboost algorithm to data ob-

tained from laser sensors and trained weak classifier sets to form

a strong classifier. The boosted strong classifier enables the robot

to perceive places like “room”, “corridor” and “doorway”. Swadzba

et al. [7] studied 3D features capturing the spatial layout of in-

door scenes on RGB-D image databases. In [8] , Madokoro et al.

presented an unsupervised scene classification method based on

context of features which contained Visual Words (VWs) based

on Scale-Invariant Feature Transform (SIFT) and Gist. In general,

the above methods and related research [9,10,12,11] encoded visual

and/or geometric information of the places into features which

can be effectively used in place recognition. However, these meth-

ods only work for simply situations, but perform poor for scenes

containing complex objects, especially for the open layout of the

indoor place. This is mainly because the attributes and relation-

ships of objects which play an important role in place classifica-

tion are ignored in the feature extraction process. Therefore, some

methods based on object information were proposed to tackle the

above problem. In [13] , Charalampous et al. fed the distribution of

objects’ location into a Naive Bayesian classifier to perform place

categorization. Moreover, a Conditional Random Field (CRF) model

was presented in [14] to jointly categorize objects and rooms from

RGB-D images, exploiting object-object and object-room relations.

In a similar way, Viswanathan et al. [15] used detection scores as

well as learned object-place relations to perform place classifica-

tion in images. The above research indicate that the accuracy of

place recognition can be effectively enhanced by considering the

properties of objects and their relationship. Therefore, motivated

by these studies, our approach also involves the objects’ properties

and relationship in the pipeline of place recognition. 

In addition to the above traditional methods, another impor-

tant category methods of feature learning for indoor place infor-
ation is based on deep learning. Deep learning models, especially

eep neural networks, are capable of learning local feature repre-

entations as well as high-level abstractive features [16,17] . Since

he indoor place category is related to the object properties and

uman’s activities within the environment, deep learning meth-

ds are widely utilized in indoor place recognition. For example,

 mid-level representation of convolutional features is proposed in

18,19] . In their papers, a deep convolutional neural network is de-

eloped for making use of the local cues, scene structure and ob-

ect category relationships in images. Another example is the com-

ination of GIST descriptor and discriminative deep belief network

DDBN) [20] , in which DDBN extracts the non-linearly encoded in-

ormation to form the global image feature. Essentially, since the

eep neural networks are a series of non-linear mathematical op-

rations, so these methods are powerful in automatically learning

iscriminative and high-level semantic feature representations that

ake the classification task much more easier in feature domain,

ather than from the image information itself. 

As human natural language is a symbolic abstractive informa-

ion, many research focus on extraction of intrinsic feature from

uch symbolized information. Meanwhile, some work attempts to

ssociate image information with natural language, because the

atter are thought to be more closer to human cognition pro-

ess. For example, recent work [21–23] etc. designed different deep

earning structures and models to describe image contents into

extual representation, some of which also contain image descrip-

ion of the object relationships and attributes [24] . 

. The proposed approach 

.1. Overview of our method 

As mentioned in Section 1 , we attempt to utilize the natural

anguage model to represent object information in images. There-

ore, the place recognition are divided into three parts, as shown

n Fig. 1 . Firstly, for an image containing place with its categorical

emantic label y , the object information such as objects status (de-

oted as set S ) and attributes (denoted as set A ), relationships (de-

oted as set R ) is obtained by image description approach and/or

y manual input through human machine interface. These infor-

ation is called Place Descriptors (PDs) and can be expressed as

 ⊂ S ∪ A ∪ R . Every element in the set D is in text-form. Since PDs

rovide an overall description of the object status, attribute and

elationships with other objects, so they can be sufficiently used

o predict the category of a place. Next as shown in Fig. 1 (b), the

bove PDs,denoted as set D , are digitized into feature vector using

 textual-digital transformation (denoted as function t ). Thus, the

igital information can be obtained and expressed as D 

� = t( D ) . In

articular, we utilize the Word2Vec method in our scheme. Finally,

he set ( D 

� 
, y ) containing all information of the place and its label

re input into the developed LSTM-CNN-based model to perform

he place classification. 

.2. Word2Vec transformation 

Natural language is a kind of abstractive symbolic represen-

ation which is highly generalized and cannot be directly recog-

ized by computers. For computer to effectively process natural

anguage, the essential idea is to represent each language unit with

 unique number and combine such numbers regularly to reflect

ich language information. In this paper, the Word2Vec transfor-

ation is utilized to convert the English words into the numbers. 

Word2Vec, also known as skip-gram model, was first proposed

y Mikolov et al. [25,26] . It is an efficient method for learning

igh-quality vector representations of words from large amounts of

nstructured text data. This word representation transfer one-hot
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Fig. 1. Illustration of the architecture of our model. (a) place descriptors of objects in the specific place; (b) Digitization of descriptors; (c) LSTM-CNN-based classifier for 

semantic classification of indoor places. 

Fig. 2. The Skip-gram model architecture. The training object is to learn word vec- 

tor representations that are good at predicting the nearby words. 
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1 https://visualgenome.org/ 
ncoded word vectors into distributed representations of words in

 vector space, which helps to express the similarity and relation-

hip between words. 

The Skip-gram model aims to find word representations that

re useful for predicting the surrounding words in a sen-

ence. As shown in Fig. 2 , given a sequence of training words

 1 , ω 2 , ω 3 , . . . , ω T , the objective of the Skip-game model is to

aximize the average log probability: 

1 

T 

T ∑ 

t=1 

∑ 

−c≤ j≤c, j � =0 

log p(ω t+ j | ω t ) , (1)

here c is the size of the training context, which can be a func-

ion of the center word ω t . The basic Skip-gram formulation de-

nes p(ω t+ j | ω t ) using the softmax function: 

p(ω O | ω I )) = 

exp ( υ ′ 
ω O 

� 
υω I ) ∑ W 

ω=1 exp ( υ ′ 
ω 

� υω I ) 
, (2)

here υω and υ ′ 
ω are the “input” and “output” vector representa-

ions of ω, and W is the number of words in the vocabulary. When

he value of the Eq. (1) satisfying the maximum requirements, the

nal value of the projection is the word vector representation of

. 

.3. Place recognition with deep learning model 

Based on the pipeline shown in Fig. 1 , a LSTM-CNN model is

stablished to solve the function t and perform place classifica-
ion. For the classification model, because the PDs contain suffi-

ient information and neural network models have demonstrated

owerful capability in natural language processing (NLP) [27] , CNN

s adopted in our model to extract n-gram features at different po-

itions in a sentence. Besides, the LSTM is also employed because it

as great effect on handling sequences of any length sentences and

apturing long-term dependencies. Finally, the hybrid deep neural

etwork model, LSTM-CNN-based classifier, is applied for semantic

lassification. 

. Algorithm implementation 

.1. Data preprocessing 

Since we focus on the semantic information of place, this model

s assumed with the ability to recognize learn semantic represen-

ation. We utilize the dataset Visual Genome 1 [28] for generating

he description corpus i.e. set D , which collect rich annotations of

bjects, attributes, and relationships within each image. 

As shown in Fig. 1 (a), we take the bedroom with its annotations

s an example to illustrate the descriptors that we concerned. Here

he objects in the image have been precisely marked and given de-

criptive texts. The annotations contain three different basic con-

epts of PDs, namely, the attributes of objects (e.g. “Turned on black

onitor ” in which ‘monitor’ is an object and ‘turned on black’ is

ts attributes, belonging to the set A ); the positional relations be-

ween objects (e.g. “Board with pictures on it ” in which ‘Board’ and

pictures’ are objects, ‘on’ is their positional relation, belonging to

he set R ) and the state of human (e.g. “Man programming on com-

uter ” in which ‘programming’ is human state, belonging to the set

 ). In addition, PDs may integrate the above basic concepts (e.g.

White keyboard next to computer ” includes both object attributes

nd their positional relations, so it becomes D ⊂ A ∪ R . Since hu-

an action and state play a crucial role in place recognition, we

ave to consider the state of human in the environment partic-

larly. In most cases, PDs in dataset appear in the form of mixed

oncepts. Our model then learn from these PDs and generate a spe-

ific label. Therefore, if a new PD ∈ D is processed by our model,

he probable label y for an unknown place can be classified as the

lace in which contains the object learned before. 

https://visualgenome.org/
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In order to ensure that these PDs can be converted to digital

form by Word2Vec approach, we need to normalize them using

data preprocessing algorithm, shown as below. 

According to the Skip-gram model introduced in Section 3.2 ,

the required parameter wordsize in Algorithm 1 represents the size

Algorithm 1 Data preprocessing. 

Input: [ x i ] k = { w n | w n ⊂ T , n = 1 , . . . , length (x i ) } is the i th PD in the

k th picture, w n is the n th word in each PD, word vocabulary T ,

batchsize , maxlen , wordsize . 

Output: [ x � 
i 
] k 

1: while not end of k do 

2: m = mod (length ([ x i ] k ) , batchsize ) ; 

3: if m > 0 then 

4: [ x i ] k = [[ x s ] k , [ x i ] k ] , s = random (1 , i ) and length (s ) = 

batchsize − m ; 

5: end if 

6: for i → 1 ; i ≤ length ([ x i ] k ) do 

7: [ x i ] k = normalize ([ x i ] k ) ; 

8: [ w 

� 
n ] k = Word2Vec ([ w n ] k , wordsize, T ) , [ w n ] k ∈ [ x i ] k ; 

9: if max (n ) < maxlen then 

10: [ x � 
i 
] k = [[ w 

� 
n ] k , zeros (wordsize, maxlen − n )] ; 

11: else 

12: [ x � 
i 
] k = [ w 

� 
1: maxlen 

] k ; 

13: end if 

14: end for 

15: return [ x � 
i 
] k ; 

16: end while 

of the training context in Eq. (2 ). In the 7 th line of Algorithm 1 ,

the normalization of PDs mainly includes the following steps: 

(1) Remove punctuation, extra spaces, and special symbols that

do not affect the original semantic cue of the PDs. 

(2) Replace the numbers in the text with the corresponding

words. 

(3) Remove stop words without changing the original semantic

cue. 

In addition to normalization, other steps in Algorithm 1 are

designed for the structure of the LSTM-CNN model. The batchsize

is used to improve the generalization performance. The parameter

maxlen represents the length of input sentence. Since maxlen

is limited by the LSTM model, it must be fixed. As shown in

Fig. 1 (b), the mini-batch strategy is utilized in the proposed LSTM,

which needs the input data to be a three-dimensional tensor. Each

dimension represents the size of the word embedding, the length

of the sentence, and the size of the batch respectively. If the PDs

have different length, it will result in existence of empty elements

in the input tensor which cannot be handled. Therefore, the

sentence length should be consistent by adding zero tensor (zero

tensor is a placeholder without representing any information)

or splitting the sentence, which is to avoid existence of empty

elements. Although PDs not necessarily have the same length, we

normalize them in Algorithm 1 to satisfy the requirement of LSTM

without information loss. 

4.2. Model structure 

The proposed semantic classifier of indoor places contains two

types of neural networks i.e. LSTM and CNN as shown in Fig. 1 (c). 

LSTM [29] is a revised architecture of recurrent neural network

(RNN) for handling sequences of any length and capturing long-

term dependencies to avoid gradient explosion or vanishing in the

standard RNN. In this paper, we apply a standard architecture of

LSTM that consists of two time steps with one basic unit repre-

senting a piece of text synthetically. 
At each time step, the output of the module is controlled by a

et of gates as a function of the old hidden state h t−1 and the input

t the current time step x t . These gates are: the forget gate f t , the

nput gate i t , and the output gate o t , respectively, and all of them

ecide how to update the current memory cell c t and the current

idden state h t . As for NLP, each step represents every position of

ord in the sentence. Because the dimension of the word vector is

iven as d , the dimension of the memory and other gates in LSTM

hare the same value. The LSTM transition functions are defined as

ollows: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i t = σ (W i · [ h t−1 , x t , c t−1 ] + b i ) , 

f t = σ (W f · [ h t−1 , x t , c t−1 ] + b f ) , 

o t = σ (W o · [ h t−1 , x t , c t ] + b o ) , 

q t = tanh (W q · [ h t−1 , x t ] + b q ) , 

c t = f t � c t−1 + i t � q t , 

h t = o t � tanh (c t ) . 

(3)

here h t is the expected result. σ is the logistic sigmoid function

ith an output in [0,1], tanh ( ·) is the hyperbolic tangent function

hat has an output in [ −1 , 1] , and � denotes the element-wise

ultiplication. Essentially, we can regard f t as the function to con-

rol how much information from the old memory cell can be for-

otten, i t as the function to control how much new information

an be stored in the current memory cell, and o t decides what to

utput based on the memory cell c t . Because LSTM can effectively

ntegrate and memorize the features of sequence data, we input

ach word in the sentence to the LSTM with forget gate o t = 0 . 5

tep by step, and finally obtain a comprehensive expression of a

entence which is then fed into CNN. 

CNN is a kind of multilayer feed-forward neural networks

hich consist of various combinations of convolutional layer, sub-

ampling layer and fully connected layer. Thanks to its power-

ul capability of capturing local correlations of spatial or tempo-

al structures, convolution becomes the central non-linear opera-

ion of CNN. Let k be the length of the filter, and vector m ∈ R 

k ×d 

enotes the filter for convolution operations. For each position j

n the sentence, we have a window vector w j with k consecutive

ord vector, given as: 

 j = [ x j , x j+1 , . . . , x j+ k −1 ] , (4)

Here, a filter m convolves with the window vectors at each po-

ition in a valid way to generate a feature map c ∈ R 

L −k +1 , and

ach element c j of the feature map for window vector w j is ob-

ained as follows: 

 j = f (w j � m + b) , (5)

here � is element-wise multiplication, b ∈ R is a bias term and

 is a nonlinear ReLU transformation function. Besides, our model

ses multiple filters to generate different f eature maps and a max-

ooling is applied after the convolution to select the most impor-

ant features. When we obtain the output from the max-pooling

ayer, a softmax function defined in Eq. (6) is added for classifica-

ion. 

(y = i | z ) = P i = 

e z i ∑ C 
j=1 e 

z j 
, (6)

here P i denotes the possibility of being classified to the i th class

nd C represents the number of classes. z i is the output from the

ully connected layer, i.e. z = Wc + b, which contains the whole in-

ormation of a PD. Then the category corresponding to the max-

mum value of output in Eq. (6) indicates the category to which

he object belongs. In this paper, we adopt a fundamental architec-

ure to construct the classifier for semantic classification. As shown

n Fig. 1 (c), the architecture of our CNN includes three basic lay-

rs with their weights and bias. The first layer is a convolutional
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Table 1 

Statistics of the Visual Genome dataset. 

Category Number of pictures Number of PDs One-hot encoder 

Bathroom 50 3149 [1,0,0,0,0] 

Bedroom 50 2597 [0,1,0,0,0] 

Kitchen 50 2929 [0,0,1,0,0] 

Living room 50 3081 [0,0,0,1,0] 

Office 50 3978 [0,0,0,0,1] 

Total 250 15,734 - 
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2 https://radimrehurek.com/gensim/models/word2vec.html 
ayer with ReLU as its activation function, which receives the hid-

en state data ( h t ) from LSTM; the second layer is a max-pooling

ayer that sub-sample the filtered data from convolutional layer;

nd the last layer is a fully-connected layer connecting the soft-

ax function with its previous layer. After processed by the deep

eural network, a description of the place from a image can be

sed to identify a specific place category. 

In addition, the output of Eq. (6) cannot obtain the place cate-

ory for the entire image. Therefore, a voting mechanism (VM) is

dded after acquiring category of every description. It counts the

umber of categories for all descriptions and classify the image to

he place category that has the most votes. 

.3. Training approach 

We train the entire model by minimizing the cross-entropy er-

or, defined as follow: 

(x 

(i ) , y (i ) ) = 

k ∑ 

j=1 

1 

{
y (i ) = j 

}
log 

(˜ y (i ) 
j 

)
, (7)

In Eq. (7) , the i th training data x ( i ) and its true label y (i ) ∈
 

1 , 2 , . . . , k } is given for learning, where k is the number of pos-

ible labels and have to be converted into one-hot vector in ac-

ual operation. The estimated probabilities ˜ y (i ) 
j 

∈ [0 , 1] for each la-

el j ∈ { 1 , 2 , . . . , k } is the output of the softmax function. Besides,

{ condition } is an indicator such that 1 { condition is true } = 1 , oth-

rwise 1 { condition is false } = 0 . 

We employ the mini-batch gradient descent to learn the model

arameters [30] , more specifically, the parameter of mini-batch m

n the 3 rd line of Algorithm 2 corresponds to the batchsize in

lgorithm 2 Mini-batch gradient descent with L2 regularization. 

nput: Learning rate lr k , learning decay rate d, max decay epoch τ ,

regularization coefficient λ, initial θ ; 

utput: Updated parameter θ ; 

1: k ← 1 ; 

2: while stopping criterion not met do 

3: Sampling a mini batch of m examples from the training set{
x (1) , . . . , x (m ) 

}
with corresponding targets y (i ) ; 

4: Compute the mean square error of cross-entropy with

L2 regularization: L ((x (i ) ; θ ) , y (i ) ) = 

1 
m 

∑ 

∥∥E(x (i ) , y (i ) ) 
∥∥2 +

λ
2 m 

∑ ‖ θ‖ 2 ; 
5: Compute gradient estimate: ̂  g ← ∇ θ L ((x (i ) ; θ ) , y (i ) ) ; 

6: Apply update: θ ← θ − lr k × ̂ g ; 

7: if k > τ then 

8: l r ← l r × d k −τ ; 

9: end if 

10: k = k + 1 ; 

11: end while 

lgorithm 1 . To avoid the overfitting problem, the learning rate

s reduced gradually when exceeding a given epoch. Besides, we

se L2 regularization approach to ensure parameters have reason-

ble values. The basic process of our training algorithm is shown

n Algorithm 2 . During training process, every weight and bias pa-

ameter ( θ) in the neural network are updated until reaching the

aximum iteration step or the error is below a threshold. 

. Experiment 

.1. Parameter settings 

In our experiment, we choose five indoor categories including

itchen, bedroom, living room, bathroom and office , and each of them
ontains 50 images from Visual Genome. These contents of anno-

ations are the prior knowledge which our model needs to learn.

able 1 shows the statistics of the dataset and some examples for

ach category are illustrated in Fig. 3 . 

According to the instructions of Word2Vec 2 , there are four key

arameters in the function, namely, dimensionality of the word

ectors (size = 128), maximum distance between the current and

redicted word within a sentence (window = 5), ignores all words

ith total frequency lower than this (mincount = 1), number of it-

rations (epochs) over the corpus (itera = 50). We have obtained

he above preferable values through many experiments. 

After processed by Algorithm 1 , every different word in the

ataset can be converted into a unique 128-dimensional vector

hich is applied to represent the normalized digital PDs. Finally,

he parameter maxlen is set as 10, which means that there are 10-

ord length in every PDs. Furthermore, in order to facilitate classi-

er operation, each category is converted into an unique string of

umbers to represent the label by one-hot encoding method. 

When using LSTM for natural language processing, the parame-

er t represents the position of words in a text sequence. In Eq. (3) ,

 t ∈ R 

d , where d = 128 means the dimension of word vector men-

ioned above. Besides, we set the value of forget gate to 0.5, while

aking the architecture into account. This indicates that half of the

ld information from output data in previous step is forgotten. The

alue of input and output gate are set as 1. Usually, high dimen-

ional word vectors can encode rich information, therefore we let

he number of hidden state neuron ( h t ) be 600 and each gate ( o t ,

 t , f t ) as well as state cell( c t , q t ) set as 200 to ensure that text fea-

ures can extract as much semantic information as possible. So far

ll fundamental parameters about the architecture of LSTM have

een set. After a fixed step size ( maxlen ) processed by LSTM, we

an obtain a 200-dimensional vector to represent the information

f a phrase. 

For parameters in CNN, more specifically, we utilize the mini-

atch technique to improve its generalization ability and set the

atch size to 32, so that it transforms the shape of the data into

0 × 600 × 32. Then the convolutional layers convolve the input

ata with 200 kernels of size 5 × 600 with a stride of 1 step for

very batch. The Max-pooling layer has one kernel of size 6 × 1 for

very batch. Then, the 200 −dimensional data are fully connected

o the last 5 neurons. Finally, the output of the last fully connected

ayer is fed to a 5-way softmax layer, which produces a distribution

ver 5 class labels. 

.2. Experiment results 

In this section, we verify the performance of our model. Firstly,

he dataset mentioned in Section 5.1 is randomly divided into two

arts, with 70% as training set and the remaining 30% as test

et. Based on Algorithm 2 , we tested our model many times and

hoose the model parameters as follow: learning rate lr k = 0 . 15 ,

earning decay rate d = 0 . 95 and maximum decay epoch τ = 0 . 15 .

https://radimrehurek.com/gensim/models/word2vec.html
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Fig. 3. Examples of indoor places with their PDs: (a)Bathroom, (b)Bedroom, (c)Kitchen, (d)Living room, (e)Office. 

Table 2 

Confusion matrix of the indoor place recognition for every PDs. (Note: 

The labels corresponding to: Bathroom(i), Bedroom(ii), Kitchen(iii), Liv- 

ing room(iv), and Office(v)). 

Confusion Matrix Predicted category 

i ii iii iv v 

Actual 

category 

i 900 48 179 55 34 

ii 60 653 42 219 50 

iii 123 28 766 69 38 

iv 45 170 123 744 166 

v 38 43 66 109 1056 

Table 3 

Precision, recall, F1 score per category and accuracy. 

Category Precision(%) Recall(%) F1 score(%) Accuracy(%) 

Bathroom 77.19 74.01 75.57 - 

Bedroom 69.32 63.77 66.43 - 

Kitchen 65.14 74.80 69.64 - 

Living room 62.21 59.62 60.88 - 

Office 78.57 80.49 79.52 - 

Average 

std(standard 

deviation) 

70.48 

( ± 6.46) 

70.54 

( ± 7.67) 

70.41 

( ± 6.58) 

70.72 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Confusion matrix of the indoor place recognition for every pic- 

ture. (Note: The labels corresponding to: Bathroom(i), Bedroom(ii), 

Kitchen(iii), Living room(iv), and Office(v)). 

Confusion Matrix Predict category 

i ii iii iv v 

Actual 

category 

i 14 0 1 0 0 

ii 0 14 0 1 0 

iii 0 0 14 1 0 

iv 0 0 0 15 0 

v 0 0 0 0 15 

Table 5 

Accuracy and training time in different proportion of test set. 

Proportion Accuracy (%) 

per description 

Accuracy (%) 

per picture 

Training time 

(sec) 

0.1 69.8 96.0 10,244 

0.2 70.1 98.0 7246 

0.3 70.7 96.0 6581 

0.4 70.6 96.0 5412 

0.5 71.4 97.6 4783 

0.6 69.7 98.0 3653 

0.7 67.7 97.1 2765 

0.8 67.7 95.5 1877 

0.9 64.5 95.5 1024 

A  

r

5

 

a  

a  

t  

i  

r  
The programming environment is TensorFlow v1.4 and Python v3.6

installed on a Intel i5 CPU with 8 GB memory platform. 

Table 2 illustrates the results in terms of the confusion matrix,

and we report precision, recall and F1 score [31] for each category

as well as overall average accuracy in Table 3 . Experimental results

show that our algorithm has a certain recognition accuracy for a

single PDs. Based on this observation, we consider processing PDs

from the same image jointly. Once the results from a single PD’s

category for test samples are available, a voting mechanism (VM)

is added to determine the final category of the place, which is also

satisfied with the basic logic of place recognition tasks. Table 4

lists the overall recognition result in format of confusion matrix.
s shown in Table 4 , our method finally achieves an average accu-

acy of 96%. 

.3. Discussion 

In addition to evaluating the effectiveness of our algorithm, we

lso verified the generalization and uncertainty performance of our

lgorithm. Table 5 shows the accuracy in different parameter set-

ings, where the first column denotes the proportion of the test set

n the total number of samples. In this experiment, we gradually

educed the number of training samples. As we can see, although
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Fig. 4. Distribution of the dataset categories in the 5-fold cross-validation and global distribution of all training set. 

Table 6 

Evaluation results for per PDs in the first four rows and per picture in the last row. Each column shows the average 

and standard deviation for k = 5 executions of the k -fold cross-validation. 

fold-1 fold-2 fold-3 fold-4 fold-5 Average 

Precision 72.50 ± 6.36 71.16 ± 5.39 66.87 ± 6.92 72.26 ± 8.01 67.60 ± 12.95 70.08 ± 2.38 

Recall 72.61 ± 7.31 71.28 ± 9.66 67.00 ± 9.24 72.02 ± 8.11 67.87 ± 9.90 70.16 ± 2.28 

F1 score 72.36 ± 5.55 71.14 ± 7.37 66.90 ± 8.00 72.10 ± 7.86 67.63 ± 11.16 70.03 ± 2.30 

Accuracy 72.59 71.50 67.21 73.07 69.26 70.73 ± 2.19 

VM accuracy 98.00 100.00 92.00 96.00 98.00 96.8 ± 2.71 

t  

t  

a  

t  

p  

t  

d  

w  

t  

b  

fi  

h  

b
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v  

t  

a  

c  

c  

c  

f  

t  

(  

m  

m

 

r  

g  

m  

p  

r  

e  

Table 7 

An example ( Figure 5 (a)) of experimental results. The actual label is bathroom, but 

the predicted label is kitchen. (Parts of PDs’ predicted results are omitted because 

of space limitation). 

PDs Predicted Results for 

each PDs 

Total 

a white porcelain sink basin 

a silver metal drain stopper 

a white plastic lid 

a handle on a faucet 

The counter is white 

etc. 

Bathroom 23 

a table in the room 

a chair in the room 

vertical mini blinds in window 

The chair is near the window 

wooden chair next to a table 

etc. 

Bedroom 10 

a black coffee machine 

glass jars on the counter 

the faucet on the sink 

the sink on the counter 

white mugs on the counter 

etc. 

Kitchen 24 

burgandy cushion on chair 

Glasses are stacked on the counter 

A wooden chair near a table 

A table near a window 

wooden table near a window 

etc. 

Livingroom 10 

a white coffee mug 

The coffee mug is white 

fan is white 

top coffee mug of a stack 

Office 4 
he count of correctly classified training samples are decreasing,

he overall recognition accuracy rate of test samples still maintains

t a high level. It indicates that our algorithm has a certain fault

olerance. We argue that this is mainly due to the generalization

erformance of the neural network, which automatically extracts

he most discriminative features of the PDs. For example, the in-

oor place of bathroom often contains PDs such as “the sink is

hite ”, these PDs play a major role in the place recognition. As the

raining samples become less, the indoor place information learned

y the neural network also reduce at the same time, so the classi-

cation accuracy rate for every PDs slightly decrease. On the other

and, because some of the discriminative features are “remem-

ered” by the neural network, which can still guarantee the correct 

lassification of images with the help of the voting mechanism. 

Besides, the proposed method is evaluated using a 5-fold cross-

alidation procedure. To perform a fair comparison among dataset,

he cross-validation folds in all evaluations have 10 test samples

nd 40 training samples for each category. As shown in Fig. 4 , place

ategories are not uniformly distributed across all folds. Mean pre-

ision, accuracy, F1 score, accuracy and accuracy with voting me-

hanics as well as the standard deviation are reported in Table 6

or each fold. High standard deviation are obtained because of

he extreme variation in the categories distribution among folds

shown in Fig. 4 ). As mentioned before, the generalization perfor-

ance can be acceptable in cross-validation method. Therefore, our

ethod using PDs in text-form is robust to a certain extent. 

Meanwhile, we also analyse a representative example that is

ecognized incorrectly. Fig. 5 shows two indoor place images to-

ether with their PDs. Taking Fig. 5 (a) as a example, this image is

anually marked as bathroom but our method predicted it com-

utes the predicted label as kitchen. The details of experimental

esults are reported in the Table 7 . We find that if an indoor place

quipped with complicated objects or has shared attributes ( e.g.
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Fig. 5. Two examples of incorrect recognition results. (a) predicted label: Kitchen, actual label: Bathroom. (b) predicted label: Office, actual label: Living room. (Parts of PDs 

are omitted because of space limitation). 

Table 8 

Comparison of different feature representation methods ( φ6 and φ7 represent the re- 

sults of our method without and with the VM, respectively). 

Methods φ1 [10] φ2 [32] φ3 [33] φ4 [20] φ5 [34] φ6 φ7 

Accuracy 85.5% 84% 73.36% 69.43% 81.2% 70.72% 96.8% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9  

P  

J  

f  

S  

P

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“the sink is white ” probably appears in the kitchen and the bath-

room), it will make our method difficult to predict the correct cat-

egory. 

We compare the proposed PD descriptor with the other differ-

ent information representation methods, Table 8 shows the com-

parison results. Taking visual clues as an example, the highest

recognition accuracy is 85.5% in Ranganathan et al.’s research [10] ,

and average accuracy is 46.85% for six indoor places’ category. Be-

sides, Swadzba et al. [32] combined different kinds of image fea-

tures to determine the place category and the classification rates

is 84% on average. Romero et al. [33] added the depth information

based on the 3D spatial pyramid to generate indoor scene descrip-

tors from point clouds. Their method achieved 73.36% in classifi-

cation accuracy. Furthermore, the methods [20] and [34] presented

two kinds of deep learning model called CNN and DDBN, respec-

tively to generate image features. As seen in Table 8 , our method

leads other methods by a large margin in terms of recognition ac-

curacy. 

6. Conclusion 

This paper presents a strategy for text-based indoor place

recognition which applies LSTM-CNN network structure. Classifi-

cation accuracy and other quantitative metrics of our method are

evaluated experimental results indicate that our approach is ef-

fective in the place recognition problem. For the future work, We

would focus on exploring the semantic connection of the objects

and human state holistically in one place. Besides, the generaliza-

tion performance of the proposed model needs further research

and improvement. We believe that the indoor scene recognition

will benefit from this indirect solution. 
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