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Abstract—Using DNA as the medium to store information has recently been recognized as a promising solution for long-term data

storage. While several system prototypes have been demonstrated, the error characteristics in DNA data storage are discussed with

limited content. Due to the data and process variations from experiment to experiment, the error variation and its effect on data

recovery remain to be uncovered. To close the gap, we systematically investigate the storage channel, i.e., error characteristics in

the storage process. In this work, we first propose a new concept named sequence corruption to unify the error characteristics into

the sequence level, easing the channel analysis. Then we derived the formulations of the data imperfection at the decoder including

both sequence loss and sequence corruption, revealing the decoding demand and monitoring the data recovery. Furthermore, we

extensively explored several data-dependent unevenness observed in the base error patterns and studied a few potential factors

and their impacts on the data imperfection at the decoder both theoretically and experimentally. The results presented here introduce a

more comprehensive channel model and offer a new angle towards the data recovery issue in DNA data storage by further elucidating

the error characteristics of the storage process.

Index Terms—Channel modelling, DNA data storage, error characterization, long-term storage

Ç

1 INTRODUCTION

THE explosion of data has driven scientists to explore new
technologies to store information. In recent years, owing

to the superior properties like extremely high physical den-
sity and preservation duration, using DNAmolecules as the
data storagemediumhas drawn a rising attention [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11]. In a typical DNA data stor-
age system, the basic data unit is a DNA strand that repre-
sents a string of nucleotide bases consisting of Adenine (A),
Thymine (T), Cytosine (C), and Guanine (G). Data writing in
DNAdata storage is performed by encoding the digital infor-
mation into an assembly of DNA sequences. Taking the
encoded DNA sequences as the reference, corresponding

DNA molecules are synthesized and very often the number
of molecule copies (e.g., copies of oligo) of each reference
sequence varies. The synthesized DNA can then be stored
and sequenced during which several random processes are
involved, leading to sequence loss at the decoder [8], [12].
Here, sequence loss refers to the loss of all copies/reads of
the reference sequence. In other words, if all sequence data
of one reference sequence could not be found at the decoder,
this reference sequence is considered lost.

Besides the sequence loss, base error is the other type of
error in DNA data storage. While the general base error sta-
tistics have been reported [9], [13], [14] and the sequence
loss has been studied [12], [13], the overall impact of these
two types of errors, i.e., base level and sequence level, on
the decoder, remains unclear. To unify the error characteris-
tics and ease the analysis at the decoder, we introduce the
concept of sequence corruption, transmitting the base type
error to sequence type error by incorporating the effects of
physical redundancy (i.e., multiple sequence copies at the
receiver/sequencer) and post-processing method into the
channel model. Different from sequence loss, sequence cor-
ruption refers to the failure of reconstructing the reference
sequence from its erroneous copies (i.e., with base errors) at
the receiver, which is the direct consequence of the base
error. Theoretically, the sequence corruption rate collec-
tively depends on the base error rate in the received copies
of the reference sequence, the received copy counts of the
reference sequence, and the post-processing methods of
reconstructing the reference sequence. From another per-
spective, this new concept leverages the multi-count physi-
cal redundancy feature of DNA data storage, enabling the
anticipation of the required logical redundancy in code
design with the presence of specific physical redundancy in
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the experiment. As a result, we define the data imperfection
at the decoder of DNA data storage channel consisting of
sequence loss and sequence corruption. Investigating the
characteristic of base errors where some variance might
exist is also important since it essentially relates to sequence
corruption and can guide the sequence (codeword) design.
Meanwhile, many factors, including data structure design,
experiment design, and computational processing, could
affect the degree of data imperfection at the decoder, lead-
ing to process-dependent errors. Understanding how the
original data (reference sequences) and these factors affect
the overall error rate at the decoder could provide insights
into several aspects of designing advanced DNA data stor-
age systems, including codec designs, sequence structure
designs, experiment designs, and data processing methods.

In this paper, we theoretically formulated the sequence
corruption which is cooperatively dictated by the base error
statistics, copy counts of the reference sequence, and down-
stream processing methods. Combining the sequence cor-
ruption with the sequence loss, we then quantified the data
imperfection by deriving the overall sequence error rate of
the DNA data storage channel. The derivation explicitly
takes the unevenness in both the count distribution and the
error patterns into consideration, revealing distinct data
recovery demands in DNA data storage using different
sequencing techniques. Furthermore, we investigated the
base error properties by analyzing the data from our previ-
ous work [11], [15]. Specifically, we first looked into the sin-
gle base error and then analyzed the 2/3/4-mer patterns
with different types of errors, i.e., substitutions, insertions,
and deletions. We observed that there are profound biases
in transition errors among DNA bases, and certain k-mer
patterns (not only homopolymers) are prone to a certain
type of errors. Lastly, with data collected from two indepen-
dent experiments and theoretical analysis, we broadly stud-
ied the factors that might affect the data integrity in aspects
spanning from structure design to biological and analytical
handling methods. By conducting the most comprehensive
study on the imperfect and uneven data in DNA data stor-
age so far, the results in this work could offer insights and
instructions to the design and processing pipeline of more
effective and efficient DNA data storage systems.

2 METHOD

2.1 Data Flow and Errors in DNA Data Storage

Data are represented in different forms at different
stages in the DNA data storage, such as binary stream,
DNA sequences, and physical DNA molecules (see
Fig. 1A). Binary data are encoded and converted into
DNA sequences before sending them to DNA synthesis.
At the synthesis stage, the count of the oligos may vary,
and the count distribution can be approximated by
gamma or normal distribution based on the different
synthesis techniques [12]. Following that, the sample
might be stored in a distributed fashion to increase data
accessibility, where a random process happens. To illus-
trate, Fig. 1A describes one scenario where physical cop-
ies of certain (i.e., purple-colored) reference sequences
are all lost, rendering physical sequence loss (i.e., 0 physi-
cal copy of the reference sequence).

To prepare the stored sample for DNA sequencing, the
sample is usually PCR amplified to meet the sequencing
requirements. The PCR amplification is another random
process, where the count of newly generated molecules fol-
lows a binomial distribution with a probability of successful
amplification. This process is likely to exacerbate the bias on
the count distribution. This biased count distribution usu-
ally leads to additional data (sequence) loss at the DNA
sequencing stage since the next-generation sequencing pro-
cess is another round of random sampling [16], i.e., the chip
only reads certain amounts of molecules from a molecule
population. With a population of highly biased distribution,
each element may have a different probability of being sam-
pled. Hence, if the sampling size is inadequate (i.e., low
sequencing coverage), the Poisson sampling effect would
cause another round of data loss. We categorize data loss at
this stage as sequencing loss (see Fig. 1A).

Apart from sequence loss, the base error is the other type
of error in the sequencing data at the receiver. In Figs. 1A
and 1B, hypothesized random base errors are black-colored
for illustration. Before sending to the decoder, the received
raw sequencing data is usually post-processed for a prelimi-
nary data reconstruction as shown in Figs. 1A and 1C. Note
that no standard has been set yet for processing the sequenc-
ing data while the processing results given by different proc-
essing methods directly affect how many remained errors
that the decoder needs to handle. Fig. 1C shows two potential
processing results, i.e., successfully reconstructed sequence
and sequence corruption, of which the sequence corruption
remains to be resolved by the decoder.

2.2 Pair-End Sequencing and Sequence Alignment

Next-generation sequencing technologies provide protocols
to generate reads from two ends of the DNA strand. These
protocols enable the sequencer to recover long DNA sequen-
ces given that the sequence length is no longer than twice the
read length. Besides, pair-end reading is also recognized to
improve the sequencing accuracy due to the overlapping
between the pair of reads. In our two previous works, Pair-
end 150 (PE150) protocols were used to readDNAoligoswith
lengths from 190 to 199 [11], [15] which makes full use of the
current synthesis and sequencing technologies. To merge the
pair-end short reads into the long reads, several prevalent
tools were designed [17], [18], [19], [20], among which we
used FLASH [19] to merge PE150 reads (see Supplementary
S1, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TCBB.2022.3233914). To estimate the base error statistics, the
merged reads from PE reads are aligned to their correspond-
ing reference/original sequences using sequence alignment
tools. Several tools were devised for sequence alignment [21],
[22], [23], amongwhichwe used Bowtie 2 [21].

3 RESULTS

3.1 Deriving the Overall Sequence Error
Rate Consisting of Sequence Loss and
Sequence Corruption

Sequence loss in DNA data storage channel might be due to
the physical sequence loss in the sample preparation and
storage and/or the sequencing loss in sequencing. We used
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a model which computationally simulates the whole pro-
cess of DNA data storage in [12] to study the sequence loss
at the decoder. By defining channel coverage as the average
number of reads per reference sequence the decoder
receives, we found that when the channel coverage is suffi-
cient, the overall sequence loss rate is lower bounded by the
physical sequence loss (see Supplementary S2 Fig. 3, avail-
able online). Without loss of generality, the sequence loss is
found to be higher when data are sampled from a popula-
tion with more severe over-dispersion, i.e., smaller coeffi-
cient of variation (C.V.) (Supplementary S2 Fig. 4, available
online). For insufficient channel coverage scenario (i.e., less
than 10x), it was found that the overall sequence loss rate no
longer changes linearly with the physical sequence, imply-
ing that the sequencing loss dominates the overall dropout
rate (Supplementary S2 Fig. 5, available online). We also
evaluated the model by fitting it with data from our previ-
ous work [15], where the correlation coefficient (i.e.,
R2 ¼ 0:96) shows that the sequencing sampling effect is
well-simulated (Supplementary S2 Fig. 6, available online).
Moreover, by comparing the experimental dilution effect in
[8] with the simulated dilution effect in a modified version
of the computational model in [12], we found that there is
still a notable gap between the experiment and the simula-
tion (see Supplementary S2 and S2 Fig. 7, available online).
To further understand the gap, we used three different
types of amplification efficiency p, i.e., constant, random,
and strand-specific random, in the computational model to
probe the association between PCR amplification and the
source of the gap (see Supplementary S2 Fig. 8, available
online). Setting the amplification efficiency as a strand-spe-
cific random variable in the computational model gives the
closest approximation to the experimental results in [8].

Sequence corruption which is the undesired result after
employing clustering algorithms but before decoding was
not the focus of most existing works [8], [9], [12], [13]. How-
ever, the impact of sequence corruption on the decoding is
not trivial when establishing more cost-effective and large-

scale DNA data storage with less accurate synthesis and
sequencing technologies where base error rates are higher
and the copy counts of the reference sequences are limited
at the receiver. In the following, we extensively study the
overall sequence error rate by incorporating both sequence
loss and sequence corruption.

3.1.1 Simplified Derivation of Sequence Error Rate

We start from the simplest formulation in which the copy
count is assumed to be even and the base error rate is assumed
to be constant, i.e., each base has the same error probability.
With these assumptions, there is no sequence loss but only
sequence corruption that is stemmed from the base error; and
it highly depends on the available copy counts at the receiver
which is denoted as channel coverage h. Besides, the sequence
corruption rates may vary if different post-processing meth-
ods are used before decoding. Here, we formulate the
sequence error rate for two commonly adopted methods, i.e.,
non-consensus (or trial-and-error) and consensus (i.e., major-
ity selection at each position). The trial-and-error means one
reference sequence is regarded as correctly recovered if at
least one read copy of it at the receiver is error-free. This can
be achieved by incorporating an error detection mechanism
within each sequence, e.g., cyclic redundancy check (CRC)
[11]. The majority selection is a well-known consensus algo-
rithm for generating representative data of clustered data.
One reference sequence is regarded as correctly recovered if
the representative sequence is error-free. For simplicity, the
formulation temporarily assumes binary majority selection at
each position.

Illumina andNanopore sequencing are the two commonly
used sequencing techniques in the existingDNAdata storage
where Nanopore sequencing can sequence longer sequences
but provides lower sequencing accuracy. To show how the
channel coverage affects the sequence error rate in Illumina-
and Nanopore-based DNA data storage differently, we
applied correspondingly different values to parameters

Fig. 1. Data flow and error characterization in DNA data storage. (A) Data writing starts from binary data encoded as DNA sequences and then syn-
thesized. The physical (synthesized) copies of sequences are stored with a certain probability of physical sequence loss due to the random sampling
process, and then the sample is prepared before sending for data reading. DNA sequencing and sampling initiate data reading where sequences
might be lost due to another round of random sampling process. The sequenced raw data can be post-processed first before being sent to the
decoder where binary data are recovered. (B) The general error characterization in DNA data storage where original encoded sequences might be
lost due to random sampling processes or erroneous due to base errors such as insertion, deletion, and substitution. (C) Two outcomes with post-
processing applied to raw sequencing data. The processed data can succeed or fail in reconstructing an encoded sequence back, and we name the
failed result sequence corruption.
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including base error rate �, sequence lengthM, to the formu-
lation V ¼ ð1� ð1� �ÞMÞh and depicted the sequence error
rate against the channel coverage. Based on the practical
measures, the base error rate � is set to 0.1%, and the sequence

length M is set to 200 to simulate the sequence corruption of
Illumina-based DNA storage, i.e., Villuðh; �;MÞ. For simulat-
ing the Nanopore-based DNA storage, i.e.,Vnanoðh; �;MÞ, the
base error rate � is set to 10% and the sequence lengthM is set
to 1000. For the trial and error (non-consensus) case, i.e., the
sequence is considered as corrupted only if all copies of the
sequence are erroneous, the curves representing the associa-
tion between sequencing coverage and sequence corruption
are shown in Fig. 2A). The same parameter values corre-
sponding to Illumina- and Nanopore-based are used to rep-
resent the consensus case with simplified majority selection
at each position as shown in Fig. 2B.

In Fig. 2, all embedded figures in the sub-figures refer to
the Nanopore-based while the rest refers to the Illumina-
based. It was found that using Illumina sequencing, the
sequence corruption rate decreases drastically with the
increase of channel coverage for both non-consensus
(Fig. 2A) and consensus cases (Fig. 2B). Specifically, with
only � 5 channel coverage, the corruption rate could be
reduced nearly to 0; and with the addition of a consensus
processing, the minimum channel coverage is decreased by
half, i.e., � 2:5. However, for channels using Nanopore
sequencing, the corruption rate maintains a high plateau
with a non-consensus method (embedded figure in Fig. 2A)
and decreases much more gradually with the consensus
method (embedded figure in Fig. 2B). With the consensus
algorithm, the corruption rate approaches 0 for a minimum
of � 20 coverage. Overall, the observation indicates that in
Illumina-based storage, increasing channel coverage (read
copy redundancy) could effectively reduce the error rate
even without any consensus algorithm while in Nanopore-
based storage, onlywith an appropriate consensus algorithm
and sufficient coverage, the error rate can be reduced to an
acceptable level.

Next, we generalize the formulation of sequence error rate
with uneven copy count distribution. In this case, the
sequence error is composed of sequence loss and sequence
corruption. The average sequence loss rate against the aver-
age copy count, i.e., the channel coverage (h), can be well
described by an exponentially decreasing curve e�� in which
� is a random variable (RV) following an uneven sequence
count distribution L. The overall sequence error rate against
the channel coverage is shown in Fig. 2C, in which the blue
and red curves represent the error rate before and after
including sequence loss, respectively. Comparing the blue
and red curves, we observe that the sequence loss has a more
significant impact on the sequence error rate in Illumina-
based DNA data storage. On the contrary, sequence corrup-
tion affects the sequence error rate more in Nanopore-based
DNAdata storage (embedded figure in Fig. 2C).

3.1.2 Elaborated Derivation of Sequence Error Rate

We adjust the simplified majority mechanism from binary
to quaternary and extend the copy count (the channel cover-
age) from the constant value h to RV hi subject to certain dis-
tribution H. Thus, for the non-consensus approach, the
expected sequence error rate of V1 with uneven copy distri-
bution becomes

V1 ¼
X
hi¼0

PrðhijHÞð1� ð1� �ÞMÞhi ; (1)

Fig. 2. Theoretical analysis and experimental result of the sequence cor-
ruption and sequence error rate against the channel coverage. The
major graph in each sub-figure refers to the Illumina-based systems
while the top right embedded figure in each sub-figure refers to the
Nanopore-based systems. (A) The sequence corruption rate with the
assumption of non-consensus method at the receiver. (B) The sequence
corruption rate with the assumption of consensus method (i.e., majority
selection at each position) at the receiver. (C) The overall sequence error
rate that consists of sequence loss and sequence corruption. (D) Theo-
retical and experimental sequence error rate against channel coverage
with the assumption of uneven copy distribution and using a non-consen-
sus method. The overall sequence error rate decreases with the
increase of coverage.
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where hi represents a copy count subject to a distribution H
(hi � H); � is the base error rate; and M is the sequence
length. Fig. 2D compares the sequence error rates of experi-
mental data from [15] (by comparing the sequencing data
with original encoded ata) with the estimates derived by (1)
with distribution H set as negative binomial fitted from
experimental data and other parameters including � and M
extracted from experimental data.

With majority selection as the consensus approach, we
have V2

V2 ¼ 1�
X
hi¼0

PrðhijHÞ
( Xhi

ki¼bhi2 cþ1

�
hi
ki

� �
ð1� �Þki �hi�ki

�

þ
Xhi2

ki¼bhi4 cþ1

�
hi
ki

� �
ð1� �Þki �hi�ki

(
1�

Xhi�ki

ji¼kiþ1

�
hi � ki

ji

� �

� 2
hi�ki�ji

3hi�ki�1

�
� 1

2

hi � ki
ki

� �
� 2hi�2ki

3hi�ki�1

��
þ 3

2
signðhiÞ

� hi
hi
4

� � 3hi
4
hi
4

 !
hi
2
hi
4

 !
�
hi
4 ð1� �

3
Þhi4
)M

; (2)

where signðxÞ is a sign function which equals 1 when
x ðmod 4Þ ¼ 0while equals 0when x ðmod 4Þ 6¼ 0; other nota-
tions are same as (1). The formulation implies that the biased

copy count distribution is not only the origin of the sequence
loss but also affects the sequence corruption rate after recon-
struction. Specifically, the skewed count distribution of data at

Fig. 3. Experimental results of uneven 2/3/4-mer error patterns for deletions, insertions, and substitutions in DNA data storage, in which the most
erroneous patterns are marked correspondingly. With the first base being deleted, following an insertion, and being substituted, the error rates of (A)
2-mer patterns; (B) 3-mer patterns; (C) 4-mer patterns. The homopolymer is observed to have an impact on deletion errors. There are specific pat-
terns that are prone to have an insertion in between. No significant discrimination among patterns is observed for substitution errors.

Fig. 4. Experimental copy count distributions for varied sample prepara-
tions. Based on data setswith 20x channel coverage, the blue-colored copy
count distribution is from the single primer binding site (PBS) experimental
set; while the red-colored copy count distribution is from the double PBS
experimental set. The blue and red solid lines represent the modes of two
distributions, respectively. The maximum counts observed in the two sets
are triangle marked, and there is one reference sequence with 174 copy
counts in the single PBS set (i.e., blue triangle). Both distributions approxi-
mate the negative binomial distribution, the single PBS distribution is with
higher biaswhere the size parameter r is smaller. i.e., 2.7 versus 3.3.
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the receiver jeopardizes the overall performance of consensus
methods which are usually designed under simplified
assumptions, e.g., the distribution of raw data is even or nor-
mal. Acknowledging the bias existing in the distribution helps
better design the consensus algorithms and better estimate the
data reconstruction performance from the sequencing data.

3.1.3 Customizing the Derivation of Sequence Error

Rate With Data-Dependent Errors

In the aforementioned formulations, a constant base error
rate � is used to represent the probability of random base
errors. However, in systems like Nanopore-based systems,
some errors occur in a sequence-dependent way. These sys-
tematic errors are quantitatively significant and relevant to
the features of the reference sequences (or synthesized
DNA molecules). For instance, it was found that around
44% of reads of homopolymer runs no less than 5 were
observed to contain a deletion error [24]. This high error
rate and the systematic fashion of the error occurrence
aggravate the data recovery difficulty at the receiver. We
summarize these errors as data-dependent errors and
specify two virtual channels to differentiate the consequen-
ces of random and systematic errors (see Supplementary
S3, available online). We specifically derive the formula-
tion of the sequence error rate of channels that are prone to
data-dependent systematic errors. For the non-consensus

approach, we have the expected error rate V3

V3 ¼
X
hi¼0

PrðhijHÞ
(

1� P ðM; lÞð Þ 1� ð1� �ÞM
� �

þ P ðM; lÞ
 
1� ð1� �ÞM

XMlþ1

y¼1

Prð� ¼ yÞð1� ahÞy
!)hi

; (3)

where P ðM; lÞ ¼ 1� qbMlog q�c�M is the probability of a
M-length q-ary sequence having at least one homopolymer
larger than length l where � is determined by the maximum
homopolymer length l (see Supplementary S4, available
online); Prð� ¼ yÞ is the probability of a sequence having y

substrings with homopolymer longer than l ; ah is the specific
data-dependent systematic error rate; and other notations are
the same as (1). Formajority selection approach, we haveV4

V4 ¼ 1� 1� P ðM; lÞð ÞPCð�Þ � P ðM; lÞP 0
Cð�;ahÞ; (4)

where

PCðxÞ ¼
P

hi¼0 PrðhijHÞ
nPhi
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2
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PM
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y¼1 Prð� ¼ yÞfPhi

bki¼hi
2 c

hi
ki

� �
ð1� bÞki bhi�ki þ 1

2

Fig. 5. The comparison of copy count (or channel coverage) distributions of A. all sequences, B. sequences including 4nt homopolymer, and C.
sequences without 4nt homopolymer with 20x coverage of single PBS data set.

Fig. 6. Experimental positional error profile of reference sequence in DNA data storage using PE150 sequencing protocol and merging processing, in
which three regions are highlighted along the coordinate. The positional error rate profile of (A) reference sequences with a length of 190nt. (B) refer-
ence sequences with lengths ranging from 190nt to 199nt. Two 150-length positional error profiles starting from two ends of the reference sequences
are presented simultaneously to accommodate the variable-length feature of the reference sequences.
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sign0ðhiÞð1� bÞkibhi�kiy and sign0ðxÞ equals 0 when x ðmod 2Þ
¼ 1 and equals 1 when x ðmod 2Þ ¼ 0. To alleviate the com-

plexities of the formulations, the approximations of (3) and

(4) could be found in Supplementary S5, available online.

Note that the above formulation is built upon the assump-
tion of storing non-constrained-formatted data where sig-

nificant increases of systematic errors are present. If data

has been constrained-formatted (avoiding the presence of

long homopolymer) at the encoding step [25], the severe

systematic errors could be avoided in the channel; and the

overall sequence error rate of the channel could be mea-

sured by (1) and (2) again. However, this constrained for-

matting/encoding is exploited at the cost of reducing the
code rate, i.e., less information stored per nucleotide.

3.2 Uneven Base-Level Errors in DNA Data Storage

3.2.1 Uneven Transition Errors AmongNucleotide Bases

We first examined the single base error profile. For fair com-
parison among independent works [11], [13], [15], we used
the filtered reads (i.e., reads with the same length as the
encoded sequences) to conduct the analysis. Note that with
filtered data, many indel errors might be excluded from the
analysis. Fortunately, though deletions are the most signifi-
cant errors in DNA synthesis, its much lower error rates
compared to sequencing errors and the prevalence and fea-
sibility of filtering in downstream processing alleviate the
impact of using filtered data on the effectiveness of the anal-
ysis. It was found that substitution is the dominant error
regardless of the choice of sequencing platforms and experi-
mental sets (see Supplementary S6, available online). Fur-
thermore, we analyzed the base transition errors since it
could help design more efficient codes as well as facilitate
decoding [26]. The normalized transition probabilities are
shown in Table 1, where the row labels denote the transmit-
ting/reference bases and the column labels denote the
transmitted bases. The bold values represent the transitions
with the highest probability for four reference nucleotides.
The Italic values represent the overall top 3 erroneous tran-
sitions. From the table, we could find that A to C, C to T, T

Fig. 7. Theoretical analysis of the impact of sequence length. (A) Sequence corruption rate against the ratio of PE read length to sequence
length. Curves with different colors represent different sequence lengths b. With PE read length 150 and curves with different colors representing
different base error rates �, (B) sequence corruption rate against sequence length; (C) incremental redundancy for addressing sequence corrup-
tion against sequence length. The achieved capacity (normalized) against the sequence length, (D) when channel coverage h ¼ 1 and raw base
error rate � ¼ 0:8%; (E) when h ¼ 10 and � ¼ 0:8%; (F) when h ¼ 1 and � ¼ 0:2%; (G) when h ¼ 10 and � ¼ 0:2%. Curves with different colors repre-
sent different sizes of stored data M.

Fig. 8. With the assumption that the sequence length is twice the read
length where the merged reads are with the full non-overlapped region,
the theoretical overall sequence error rate in Illumina-based storage
against the channel coverage, where the raw base error rate is (A) 0:8%
similar to Miseq ; (B) 0:3% similar to Hiseq [30]. In each figure, different
colors represent different size parameters of the copy count distribution
that are ascribed to sequence loss.
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to G, and G to A are the most potential transitions for each
reference base, i.e., A, C, T, and G. Regardless of the minor
transitions from any of four bases to the N base, the A to C
transition is over 3-fold and 4-fold to other two transitions
accordingly, i.e., A to T and A to G. Likely, C is almost 3-
fold and 4-fold possible to be recognized as T rather than A
and G. For T base, the transitions to C and G are both signif-
icantly high with approximately 3-fold over T to A transi-
tion. Base G has the most considerable transition rates, in
which G to A and G to T are about 10-fold than C to G.
Overall, G to A, G to T, and A to C are the top three discern-
ible transitions. Several results in the literature are generally
consistent with our observations [27], [28], [29].

3.2.2 Uneven k-mer Error Patterns

In addition to single base error, we estimated the k-mer error
patterns in DNA data storage channel. We first analyzed the
2-mer error patterns with respect to deletions, insertions,
and substitutions (Fig. 3A). For deletions, we found that the
most erroneous 2-mer patterns of four reference bases are
their corresponding 2-mer repetitions i.e., AA, CC, TT, and
GG. For insertions, the 2-mer patterns that are prone to hav-
ing an in-between insertion are AG, CG, TG, and GA for A,
C, T, and G, respectively. For substitution error rates of pat-
terns where the first base is substituted to other bases, there
is no significant discrimination albeit with the most errone-
ous 2-mer patterns for each base are the corresponding
2-mer repetitions. The G-oriented patterns show higher sub-
stitution rates than the error rates of the other patterns,
which concurswith the single base error statistics.

Likewise, we analyzed the 3-mer error patterns (Fig. 3B).
For deletions, the most error-prone 3-mer patterns for each
nucleotide base are the corresponding 3-mer repetitions,
i.e., AAA, CCC, TTT, and GGG, which are in line with 2-
mer deletion patterns. Moreover, the 3-mer repetitions pres-
ent higher error rates than the 2-mer repetitions, implying
that longer homopolymer might have higher deletion ten-
dency. Again, there are much higher insertion error rates
for specific 3-mer patterns, including AGG, CGG, TGG, and
GAA. Interestingly, except GCC, all other top 3 erroneous 3-
mer patterns (that are shown in Fig. 3B) are with prefixes
that are the most error-prone 2-mer patterns, i.e., AG, CG,
TG, and GA. This infers that the insertions observed in the
received data might highly relate to the neighboring bases.
Similarly, most of the top 3 erroneous 3-mer patterns with
the first nucleotide being substituted are consistent with the
most error-prone 2-mer patterns. However, again, there is
no significant discrimination between repetitive patterns
and other non-repetitive patterns. Equivalently, the 4-mer
repetitions are observed to have the highest tendency

toward deletions. And the 4-mer repetitions are with higher
deletion rates than the 2-mer and 3-mer repetitions, which
further proves that the longer the homopolymer, the higher
the probability to encounter deletions (Fig. 3C). For inser-
tions, the most discernible 4-mer patterns for each base are
AGGG, CGGG, TGGG, and GAAA. All of them are with 3-
mer prefixes that are the most error-prone 3-mer patterns,
i.e., AGG, CGG, TGG, and GAA. For most of the 4-mer pat-
terns, we observe similar substitution rates as the 2-mer and
3-mer cases. This suggests that homopolymer does not have
a significant impact on substitution rates. We also examined
errors occurring at the second position in 2/3/4-mer and
the last position in 3-mer and 4-mer (see Supplementary S7,
available online) and we find that the result is either with
no significant erroneous patterns or in line with the patterns
observed in the first position.

3.3 Factors Impacting Overall Sequence
Error Rates in DNA Data Storage

3.3.1 Sample Preparations Affect the Copy

Count Distribution

To start with, in Fig. 4, we compared the copy count distribu-
tions of the reference sequences in our two experiments with
different sample preparations [11], [15]. The scheme in [15]
was designedwith a single primer binding site (PBS)without
conducting PCR amplification before proceeding to DNA
sequencing, and the other one [11]was designedwith double
PBSs and the sample was amplified with 9 cycles of PCR
before sequencing.We used the data setswith channel cover-
age 20x, which means that ideally 20 copy counts of each ref-
erence sequence could be found at the receiver. The two
observed distributions both approximate negative binomial
distribution which is the consequence of randomly down-
sampling from a large population with gamma distribution.
Biases in the count distributions are observed for both
experiments; and the bias in the single PBS set is larger with
size parameter r of smaller value, i.e., 2.7 versus 3.3. Besides,
in the single PBS set, one reference sequence has 174 copy
counts far away from themean coverage of 20x. The different
degrees of PCR bias and PCR stochasticity (see Supplemen-
tary S8, available online) might ascribe to the bias difference
between the two experiment sets. To further confirm the
major source of the bias differentiation between two distribu-
tions, we compared the copy count distributions of all
sequences, sequences including 4nt homopolymer, and
sequences without 4nt homopolymer as shown in Fig. 5. It is
observed that the sequence with maximum copy counts, i.e.,
174, is with 4nt homopolymer. And there is no obvious dis-
crepancy in distributions among the three sets. This implies
that rather than distinct PCR biases caused by sequence-spe-
cific randomness (due to homopolymer differentiation), dis-
tinct degrees of PCR stochasticity caused by different sample
preparationsmajorly explain the bias difference.

3.3.2 Sequence Structure and Downstream

Processing Affect the Base Error, Sequence

Corruption, and System Capacity

The basic data unit in DNAdata storage, i.e., DNA sequence,
is usually designed with length � 200 to tailor the current

TABLE 1
The Base Transition Error Rates

A C T G N

A - 0.157 0.049 0.037 0.003
C 0.032 - 0.078 0.02 0.003
T 0.021 0.062 - 0.072 0.004
G 0.201 0.073 0.182 - 0.007
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synthesis and sequencing techniques. For Illumina-based
systems, a PE150 protocol could be used to increase the
sequencing accuracy by stitching two paired-end (PE) reads.
We aligned themerged reads back to the reference sequences
to study how the reference sequence length and the general
merging processing cooperatively affect the error profile in
DNA data storage channel. The average positional error
rates along the coordinate of the reference sequence are
shown in Fig. 6. The average base error rate along the coordi-
nate is uneven where the overlapped region (pink-colored in
Fig. 6) has a lower error rate than the non-overlapped region
(blue-colored) does. And the substitution errors are reduced
most notably in the overlapped region. The overlapped
region is a region that corresponds to the universal regions
shared by two PE reads. The unevenness between over-
lapped and non-overlapped regions is due to the gap
between the length of reference sequences (i.e., 190nt and
190�199nt) and the length of PE reads (i.e., 150nt).Moreover,
by comparing the blue-colored (i.e., non-overlapped) regions
in Fig. 6A, we could find that the non-overlapped region
with a PBS region (gray-colored) as the adjacent has a lower
error rate than the other non-overlapped region.

Additionally, we analyzed the data sets that have been
filtered by lengths. This further proves structural design of
the sequence, i.e, appended with single PBS or double PBS
and fixed length or variable lengths, affects the data integ-
rity at the decoder (see Supplementary S9, available online).
It is found that despite that filtering alleviates errors espe-
cially indels, filtering might aggravate sequence loss espe-
cially when the number of reads provided at the sequencer
is limited. This is because after filtering, fewer data are left
as if sequencing with small coverage has been performed.
Hence, we compared the overall sequence rates before and
after filtering with a given number of reads (see Supplemen-
tary S10, available online). By incorporating the sequence
loss and sequence corruption (under the trial-and-error
assumption), the filtered data set shows the same sequence
error rates as those of non-filtered data set up to coverage
� 30x (Supplementary S10 Fig. 15C, available online). This
is because the increase rate of sequence loss is the same as
the decrease rate of sequence corruption after filtering when
trial-and-error is used. Nevertheless, it is worth mentioning
that the overall error rate with the assumption of using a
consensus algorithm might not be the same case (see Sup-
plementary S10, available online).

Inspired by the unevenness of base error rates along the
sequence coordinate caused by the length difference
between reference sequences and PE reads, we theoretically
analyzed the impact of the sequence length on the sequence
corruption rate. The relationship between the ratio of PE
read length to the sequence length and the sequence corrup-
tion rate V follows:

aðSiÞ ¼
1 a

b < 0:5

1� ð1� �Þ2ðb�aÞð1� �
2Þð2a�bÞ 0:5 � a

b < 1

1� ð1� �
2Þb a

b � 1

8><
>: ; (5)

where a is the PE read length; b is the sequence length; � is
the raw base error rate.

First, Fig. 7A depicts how the ratio of read length to the
sequence length affects the sequence corruption rate.

Specifically, when the ratio is below 0.5, stitching two PE
reads is unable to recover the reference sequence (see Sup-
plementary S1 Fig. 1C, available online), leading to 100% cor-
ruption. When the ratio is from 0.5 to 1, the corruption rate
decreases when the ratio increases. When the ratio is no less
than 1, each PE read could ideally cover the whole sequence
(see Supplementary S1 Fig. 1A, available online), rendering
the merged read with a fully overlapped region and conse-
quently reducing the corruption rate to a low floor. The raw
error rate used to draw Fig. 7A is set to 0.8% approximating
the Illumina Miseq sequencing. Comparing the curves with
different colors, the impact of the ratio on the sequence cor-
ruption rate was found more noticeable for shorter sequence
lengths. With PE read length 150, Figs. 7B and 7C show that
the sequence length b directly affects the sequence corruption
rate and incremental redundancy for addressing the corrup-
tion. Particularly, the increased corruption rate caused by
the increased sequence length requires an increased redun-
dancy to recover data. The incremental redundancy follows
1

1�V � 1, where 1� ð1� �Þ2ðb�aÞð1� �
2Þð2a�bÞ, as b 2 ð150; 300Þ

which gives the ratio a
b 2 ð0:5; 1Þ.

We continue to explore the impact of the sequence length
on the achieved capacity with an assumption of regarding
DNA data storage as an erasure channel where error-correct-
ing code is applied at the sequence level to address the era-
sure, i.e., sequence corruption. Here, the capacity is
determined by the redundancy required for correcting the
sequence corruption and the redundancy required for index-
ing. These two redundancies are highly related to the
sequence length, and the impacts of sequence length on them
are opposite. Specifically, given a fixed PE read length, the
longer the sequence length, the higher the sequence corrup-
tion rate and error correction redundancy, and the lower the
achieved capacity of the system. In contrast, given fixed data
size, the longer the sequence length, the lower number of
sequences required to store the data, the lower redundancy
required to index the data, and thus the higher the achieved
capacity of the system. The achieved capacity with considera-
tions of both error control correct redundancy and indexing
redundancy could be derived as C ¼ ð1�VÞð1� bi

b Þ where
V ¼ ð1� ð1� �Þ2ðb�aÞð1� �

2Þð2a�bÞÞh is the sequence corruption
rate counting in the effect of coverage h with the assumption
of the use of trial-and-error; other parameters are the same as
the above mentioned; bi is the redundancy required to
index all encoded sequences including information sequen-
ces and redundancy sequences. bi is resolved by equation
4bi ¼ M

ðb�biÞð1�VÞwhereM is the size of data that is to be stored.

With different channel coverage h and base error rate �,
Figs. 7D, 7E, 7F, and 7G shows how the achieved capacity
changes with the sequence length in which different colors
represent different stored data sizes ranging from 1 Kilobyte
to 1 Terabyte. We found that for higher base error rate sys-
tems (Figs. 7D and 7E), the achieved capacity decreases
with the increase of sequence length, presenting that the
impact of increased redundancy for error correction on the
capacity plays the prime role. This trend also appears in
lower base error rate systems when the coverage is 1x
(Fig. 7F), i.e, ideally only one read for each reference
sequence could be used for data reconstruction. Interest-
ingly, the trend reverses in the lower base error rate system
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when the coverage is 10x (Fig. 7G). The much lower corrup-
tion rates ascribed to the high coverage could be the reason
for the reversed trend. The error correction redundancy
required by the much lower corruption rates no longer
weighs higher than the indexing redundancy in regard to
affecting the capacity. Therefore, in Fig. 7G, the increased
capacity with the increased sequence length is mainly due
to the decreased indexing redundancy. This indicates that
in most cases, designing sequences with short lengths could
improve the achieved capacity (Figs. 7D, 7E, and 7F). How-
ever, for storage systems with very low raw base errors and
sufficient coverage at the receiver (Fig. 7G), sequence length
could be designed as long as possible (up to twice of PE
read length) to improve the achieved capacity.

3.3.3 Theoretical Estimation of the Overall

Sequence Error Rate

Using different synthesis techniques and experimental set-
tings gives different count distributions at the receiver, lead-
ing to distinct sequence loss rates. Meanwhile, using
different sequencing techniques and data processing meth-
ods gives different base error rates at the receiver, leading
to distinct sequence corruption rates. We thus theoretically
estimate the overall sequence error rate consisting of
sequence loss and sequence corruption by setting a range of
practical values to several important impacting factors.
With the assumption of using a non-consensus post-proc-
essing method after merging PE reads, the formulation of
the overall sequence error rate is an extended version of (1)
where the base error is no longer constant along the coordi-
nate but varies with the region, i.e., overlapped or non-
overlapped.

We separately consider two scenarios, i.e., the merged
reads with fully non-overlapped (Fig. 8) and fully over-
lapped regions (Supplementary S11 Fig. 16, available online).
Build upon these considerations and with the assumption of
using trial and error before decoding, we formulate the esti-
mation of overall sequence error rate as follows:

�
r

hþ r

�r

þ
�
1�

�
r

hþ r

�r�
V; (6)

where r is the size parameter of the copy count distribution
(which approximates to negative binomial (NB) distribution
at the receiver; h is the mean coverage of reference sequence

at the receiver; V ¼ ð1� ð1� �Þ2ðb�aÞð1� �
2Þð2a�bÞÞh where � is

the raw base error rate (i.e., the error rate in the non-over-

lapped region); b is sequence length with a range a to 2a

where a is the PE read length. Note that the formulation

separately considers sequence loss which is deduced by

size parameter r and mean coverage h and sequence corrup-

tion which is deduced by raw base error rate �, sequence
length b, PE read length a, and mean coverage h. Another

more precise way to construct estimation formulation is

using random variable coverage hi rather than mean cover-

age h where hi follows NB distribution NBðr; p ¼ r
hþrÞ. In

this way, the sequence loss (hi ¼ 0) and sequence corruption

(hi 6¼ 0) can be denoted simultaneously.
First, the merged reads are with the fully overlapped

region. To comply with the assumption, the sequence length

is set equal to the PE read length (i.e., 150nt). The sequence
error rate against the channel coverage is illustrated (see
Supplementary S11, available online). In general, the higher
the base error rate is, the higher the channel coverage is
required to achieve a similar sequence error rate at the
decoder. The variations among different base error rates,
i.e., among sub-figures, are not notable. In the aspect of
copy count distribution, the smaller the size parameter is,
i.e., the more over-dispersion of the distribution, the higher
the sequence error rate. Next, we analyzed the non-over-
lapped read case by setting the sequence length twice of the
PE read length. Similarly, we draw two sub-figures, i.e.,
Figs. 8A and 8B, corresponding to two different raw base
error rates, i.e., 0.8%, 0.3%, corresponding to Miseq and
Hiseq Illumina sequencing, respectively [30]. The trend of
the sequence error rate against the channel coverage, in this
case, is the same as the overlapped case, but the discrimina-
tion among different base error rates, i.e., among sub-fig-
ures, is more notable. Comparing these two groups of
figures (Fig. 8 versus Supplementary S11 Fig. 16, available
online), it could be found that to obtain a similar sequence
error rate with the same base error rate and size parameter,
the required coverage of the non-overlapped case is no less
than the overlapped case, i.e., � 4-fold for 0.8% base error
rate, � 1:5-fold for 0.3%. To this end, we conclude that if the
raw base error rate could be kept around 0.3% or less, the
sequences could be designed with long lengths (i.e., from
150 to 300) where merged reads are all non-overlapped.
However, for systems with higher base error rates, short
sequence design (i.e., no longer than 150) which leads to all
merged reads overlapped or semi-overlapped is a better
choice.

4 DISCUSSION

Distinct from other traditional storage systems, DNA data
storage systems exhibit a few unique characteristics. Specifi-
cally, there are generally amounts of redundant data copies
of original data albeit these copies might be corrupted by
base errors; the number of redundant data copies for each
original data unit is uneven. Some existing works [8], [13]
substantially discussed the adverse consequence of the
uneven copy count distribution, i.e., sequence loss, while
did not discuss the multi copies’ benefit to data reconstruc-
tion. Also, the physical redundancy of data copies at the
decoder was excluded from the channel and discussed sep-
arately from the logical redundancy of the error control
code. In fact, the multi-count data feature of DNA data stor-
age enables a pre-decoder data reconstruction from multi
(erroneous) copies where we term the failure of the recon-
struction as sequence corruption. With the preliminary
reconstruction before decoding, the data imperfection at the
decoder that consists of sequence loss and sequence corrup-
tion offers a unified error profile for DNA data storage
channel, easing the channel analysis and giving new
insights for future code design. Note that this work did not
try to differentiate errors presenting at different stages of
DNA data storage, e.g., DNA synthesis, sample preparation,
and PCR amplification, but characterized the errors from
the aspect of data reconstruction at the receiver with centre
to errors observed and to be addressed by the decoder. This
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simplification of characterization is due to the fact that the
decoder essentially disregards where the observed errors
come from. However, future works aiming to differentiate
the errors could be interesting as they could shed light on
the design of biological experiments provided that the chal-
lenge of individually investigating those processes with
high complexity and uncertainty is overcome.

Diving into the data imperfection observed from the
experiments, biases have been found both in copy counts
and base error patterns. The existence of these biases further
distinguishes DNA data storage from other conventional
storage systems, suggesting that facilitating higher perfor-
mance gains in terms of capacity, reliability, and robustness
in DNA data storage are possible. Moreover, the uneven-
ness in the error rates of base patterns, including uneven
error rates of single base transition and k-mer deletion/
insertion, could be used as prior knowledge for decoding
and optimizing encoding. For instance, using the transition
tendency as the additional information to the decoder
increases the error correction performance [26]. Also, the
uneven transition feature could be leveraged to design
unequal codes with higher efficiency. In addition, the dele-
tion-prone characteristic in the long homopolymer patterns
especially in Nanopore-based systems suggests that coding
techniques that restrict the homopolymer length, i.e.,
constrained coding [25], [31], [32], might be a promising
solution provided that the subsequent reduction on code
rate/capacity is tolerable. Additionally, with the prevalent
PE sequencing protocol and merging processing as the
premises, the uneven error rate along the sequence coordi-
nate (between non-overlapped and overlapped regions) is
another unevenness that could be used for code design, e.g.,
unequal encoding, to increase the achieved capacity.

In this work, the impact of sample preparation on the
data at the receiver was investigated based on two experi-
ments with different rounds of PCR amplifications before
DNA sequencing. We have shown that samples with more
rounds of PCR attribute to less biased sequenced data since
it provides a more sufficient initial amount of molecules
avoiding severe PCR stochasticity. Besides PCR, other sam-
ple preparation steps should also affect the data integrity at
the receiver and could be investigated in future work. The
impact of sequence length on the data imperfection at the
decoder and channel capacity was also theoretically stud-
ied. It was observed that only with sufficient coverage and a
low base error rate, the achieved capacity could increase
with the increase of sequence length. However, in other
cases, the achieved capacity decreases with the increase of
the length because of the increased redundancy for address-
ing the increased corruption rate. Hence, the system should
be designed through comprehensive consideration of the
involved impacting factors and the trade-offs among them.

5 CONCLUSION

We have conducted a comprehensive investigation of errors
in DNA data storage channel. Quantitatively, the data
imperfection including sequence loss and sequence corrup-
tion at the decoder has been presented. Besides deriving the
sequence error rate to monitor the data reconstruction
demand, we also further studied the imperfect data and

found out that unevenness exists in several aspects and it
could in turn help design systems with better performance.
Additionally, we experimentally and theoretically analyzed
the sequence error rates under different experiment settings
and various but realistic parameter settings, including
sequence lengths, base error rates, and over-dispersion
degrees of distribution. From the perspective of data recon-
struction, the results reported provide new perspectives for
the development of advanced future DNA data storage.
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