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Abstract—Smart grid is expected to make use of Internet-of-
Things (IoT) networks to reliably monitor its state from remote
places.However, due to a potentially unstable nature of a smart
grid plant, in particular, when using renewable energy sources,
and an unreliable wireless channel used in IoT, it is a challenging
task to reliably track the state of smart grids. This article proposes
a robust communication framework for state estimation/tracking
of unstable microgrids, which is a key component of a smart grid.
We present an IoT-integrated smart grid system to monitor the
status of microgrids over a wireless network. A delay-universal-
based error correction code is utilized to achieve a reliable and
real-time estimation of microgrids. To exploit the features of the
delay-universal coding scheme, we propose an iterative estimation
technique. Through numerical results, we show that the proposed
scheme can closely track the state of an unstable microgrid. We also
show the impact of wireless network parameters on the estimation
performance. The estimation performance of the proposed scheme
is compared with the estimation performance of a traditional error
correction coding scheme. We show that the proposed scheme
substantially outperforms the traditional scheme.

Index Terms—Internet-of-things (IoT), microgrid, smartgrid,
real-time estimation and control.

I. INTRODUCTION

THE future of our energy systems is based on the notion
of smart grids, which will through the connection and

state monitoring of generation and consumption assets through
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Internet of Things (IoT) networks allow us to match the required
energy exactly to the generated energy [1]. Realizing such a
capability will have a transformative impact on many application
domains in residential, business, and industrial energy use [2].
Attempts to achieve stable and reliable grid operations for these
applications have generally relied on robust and real-time state
estimation of generation and consumption assets over an IoT
network [3], [4]. However, state estimation in smart grids is
challenging as the communication between the smart grid’s
components, such as a microgrid, and the grid management
system is usually accomplished via a wireless link. Therefore, a
proper communication and estimation scheme is a prerequisite
that is robust in the presence of factors such as noise or fading,
which introduce errors into the wireless channel. Significant
effort has been made toward state estimation of a smart grid
and different algorithms and tools have been proposed in the lit-
erature. State estimation techniques can generally be categorized
into the following two distinct classes [5].

1) Centralized state estimation, where a central state estima-
tion unit collects and processes all measurements from
local sensors to obtain a global estimation.

2) Distributed state estimation, where every local estimator
calculates the state information based on its individual
measurements and forwards its estimation to the central
state estimation unit.
The former approach demands extensive computational
and communication resources and is vulnerable to single-
point failure [6]. Consequently, the latter approach is
considered as a promising alternative as it not only re-
quires less communication bandwidth but also enables
parallel processing. Therefore, a range of state estimation
techniques and tools have been developed in previous
works. For example, in [7], a hierarchical framework is
proposed, where, in the first layer the local state estimation
is performed for all subsystems in parallel, and in the
second layer, the coordination of these local estimations
is realized. However, the proposed hierarchical estimation
technique suffers from low reliability. A similar technique
has also been studied in [8] and [9] for multiarea power
systems. A survey of recent advances in the multiarea state
estimation is discussed in [10]. A multilevel framework
is proposed in [11], which integrates the existing state
estimator that operates at different levels of modeling
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hierarchy to monitor large-scale interconnected power
systems. As an extension of this idea, in [12], a fully
distributed Gauss-Newton iteration scheme for the state
estimation of the electric power systems is proposed.
Here, at each iteration, a matrix-splitting strategy is used
to execute the matrix inversion, as it is required for the
Gauss-Newton iteration. Another widely used approach in
the smart grid state estimation is the distributed Kalman
filter (DKF). For example, in [13], a distributed hierar-
chical framework forthe DKF is proposed where each
sensor node independently computes local Kalman filter
(KFs), which are then combined by a central processor to
calculate the global estimates. A distributed extended and
unscented information filters are analyzed in [14] for the
condition monitoring of electric power transmission and
distribution systems. In [15], a real-time power system
state estimation is proposed based on a decentralized
unscented KF algorithm. Finally, in [16], using a weighted
averaging technique, a DKF is proposed.

Although a considerable amount of research has been carried
out toward state estimation in microgrids over the past decade,
most of the work assumed that the communication channel is
ideal. In other words, most of the literature did not consider
the impact of an erroneous communication link between the
sensors in a microgrid and the state estimation/monitoring unit
with few exceptions [17]–[19]. In [18], the state estimation
through wireless sensor networks over fading channels and
missing measurements causing packet loss are analyzed using
the KF. Moreover, a filtering algorithm is developed in [19]
considering the missing measurements to deal with the state
estimation in power systems by taking the measurements as
inequality constraints. Considering packet losses, in [17], a
linear quadratic Gaussian control strategy is developed, which
is suitable for the centralized power system state estimation and
control. Most of these works assumed a stable smart grid system,
which is typically not the case in practice, in particular with
renewable energy sources, where the stability margin changes
during the practical operation. Moreover, no robust communi-
cation framework is developed to tackle the errors generated
through unreliable communication links. Thus, despite signif-
icant efforts toward developing state estimation techniques for
smart grids, the fundamental problem to reliably track the state
of smart grids over an IoT network remains to be solved due to
the unstable nature of smart grids and the unreliable nature of
wireless communication channels used with IoT networks.

In this article, we present a robust communication framework
to track the state of an unstable microgrid over IoT networks.
For reliable and real-time tracking of the microgrid’s state, we
utilize a delay-universal coding scheme to mitigate the errors
generated by the wireless channel. We propose an iterative
estimation technique to exploit some unique features of the
delay-universal code. We show that together with the proposed
estimation technique, the proposed communication approach
can closely track the states of an unstable microgrid. We also
investigate the impact of different parameters of the wireless
channel on the estimation performance. The performance of the

Fig. 1. Monitoring of a dc microgrid via an IoT network.

proposed scheme is compared with that of the traditional com-
munication and estimation approach. Through numerical results,
we show that the proposed scheme significantly outperforms the
traditional approach in terms of tracking performance.

The remainder of this article is organized as follows. Along
with a general system model of an IoT-enabled smart grid,
we present the state-space model of the dc microgrid in
Section II. The communication framework with delay-universal
and traditional coding schemes is described in Section III.
In Section IV, we present the proposed iterative estimation
technique to exploit the features of the delay-universal code.
Along with this comparison, the performance evaluation of the
proposed scheme is presented in Section V. Finally, Section VI
concludes this article.

II. SMART GRIDS IN IOT NETWORKS

The main theme of the IoT concept is to connect devices
over the internet and monitor/access those devices anytime
from anywhere. In recent years, the IoT has gained signifi-
cant attention in the smart grid community, as IoT can be a
potential solution to remotely monitor and/or control the smart
grid in real time. Especially, the IoT can play a vital role in
monitoring/controlling microgrids, which can be considered as a
subset of a smart grid. The general framework of an IoT-enabled
microgrid monitoring system is shown in Fig. 1. This microgrid
contains a smart sensor system, which senses the state of the
microgrid and transmits the sensing information to an energy
management/monitoring unit. As microgrids are generally lo-
cated in remote places due to the space requirements of, for
example, wind or solar farms, the sensor system communicates
with the energy management/monitoring unit via a wireless IoT
network. Thus, it is essential to ensure reliable and real-time
wireless communication between the sensor system and gate-
ways, e.g., base stations or even satellites. Before presenting a
robust communication framework for an IoT-enabled microgrid
in the following section, we first present a dynamic state-space
model of a microgrid in the following.

A. DC Microgrid in Smart Grids and Its State-Space Model

A dc microgrid, which typically integrates a number of dc
sources and dc loads, offers an advantage over ac microgrids
in terms of the system efficiency, cost, and system size as it
eliminates the redundant energy conversion [20]. In general,

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 06,2024 at 17:08:27 UTC from IEEE Xplore.  Restrictions apply. 



2178 IEEE SYSTEMS JOURNAL, VOL. 15, NO. 2, JUNE 2021

Fig. 2. Simplified equivalent circuit diagram of a dc microgrid.

a dc microgrid consists of the following main components
[3], [21].

1) Source: The renewable energy source is represented by an
equivalent dc voltage source.

2) Filters: A series of line filters are used to reduce the volt-
age/current harmonics and electromagnetic interferences.

3) Loads: Motor-type dc loads along with the battery and
resistive loads are generally used in dc microgrids.

Fig. 2 shows a simplified equivalent circuit diagram of a dc
microgrid, where R, L, C, I , and V are the resistance, induc-
tance, capacitance, current, and voltage, respectively, whereas
the subscripts c, 1, 2, sc, L1, and L2 represent the component
of converter, filter 1, filter 2, supercapacitor, load 1, and load 2,
respectively. From Fig. 2, the differential equations of the mi-
crogrid can be derived as follows by applying Kirchhoffs laws
[22] as

ΔIc(k + 1) =
−RcΔIc(k)−ΔVc(k)

Lc

ΔI1(k + 1) =
−R1ΔI1(k) + ΔVc(k)−ΔV1(k)

L1

ΔI2(k + 1) =
−R2ΔI2(k) + ΔVc(k)−ΔV2(k)

L2

ΔVc(k + 1) =
ΔIc(k)−ΔI1(k)−ΔI2(k) + ΔIsc(k)

Cc

ΔV1(k + 1) =
ΔI1(k) + ΔIL1(k)

C1

ΔV2(k + 1) =
ΔI2(k) + ΔIL2(k)

C2

where Δ in the aforementioned equations denotes the deviation
of the system state variables around the operating points. At
any time step k, the aforementioned partial differential equa-
tions representing the microgrid can be written in the following
discrete system dynamic form:

Xk+1 = AXk +BUk +wk (1)

where X is the state of the microgid defined by X =
[ΔIc ΔI1 ΔI2 ΔVc ΔV1 ΔV2]; U is the control input defined
by U = [ΔIsc ΔIL1 ΔIL2]; w is bounded noise/disturbance
withw ∈ {W−,W+};A is a discretized state matrix defined by
A = I +αδt, whereα is given in (2) and δt is the discretization
step size; and B is the control distribution matrix defined by

B = I + βδt, where β is given in (3).

α =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Rc

Lc
0 0 − 1

Lc
0 0

0 −R1

L1
0 1

L1
− 1
L1

0

0 0 −R2

L2

1
L2

0 − 1
L2

1
Cc

− 1
Cc

− 1
Cc

0 0 0

0 1
C1

0 0 0 0

0 0 1
C2

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2)

βT =

⎡⎢⎣0 0 0 1
Cc

0 0

0 1
C1

0 0 1
C1

0

0 0 1
C2

0 0 1
C2

⎤⎥⎦ . (3)

In the rest of the article, we consider the control input U = 0
for the sake of simplicity, as the main focus of this article is
to track the state of the microgrid rather than the control. With
the aforementioned specifications of the microgrid, it can be
shown that the microgrids are unstable, i.e., |A| > 1. Thus, with
a high probability, it can be shown that the state of the microgrid
will grow unbounded with the progression of time. However, a
limited rate communication link is not sufficient to encode and
transmit the unbounded state. Thanks to the bounded noise, we
can estimate the state by knowing the noise provided that the
initial state is known [23]. In the following section, we present
the communication approach to transmit the bounded noise and
perform the estimation based on the observed bounded noise at
the receiver.

III. PROPOSED COMMUNICATION STRATEGY

A microgrid can be monitored remotely by leveraging a wire-
less communication technique. However, due to the uncertainty
in the wireless network, a robust communication framework is
required to tackle the error induced from the wireless channel. In
the following, we present the proposed communication frame-
work to monitor the state of the microgrid over a wireless net-
work. As mentioned in the previous section, due to the unstable
nature of the microgrid, it is not feasible to quantize and encode
the actual state of the microgrid. As the process noise is bounded,
we quantize, encode, and transmit the bounded noise instead of
the actual state. In practice, it may not be feasible to sample and
transmit the observed microgrid’s states at every time interval δt
(especially when δt is very small) due to hardware constraints.

Let τ be the number of discrete time steps after which the
sensor system of the microgrid performs sampling and trans-
mission. In other words, the states of the microgrid are sampled
at time step k = 0, τ, 2τ, . . . . Considering sampling interval and
all zero control input, the equivalent dynamic system of (1) can
be written as

Xs = AτXs−1 + νs (4)

where s is the sampling instant defined in discrete-time step
k = sτ and νs is the accumulated noise defined by νs =∑τ−1
j=0 A

τ−1−jws+j . Since wk is bounded, νs will also be
bounded. Hence, at every time interval of τδt, the sensor system
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samples and transmits the accumulated noise. The details of
sampling and transmission processes are given later.

At any sampling instant i, the transmitter of the sensor system
performs the uniform quantization on each element of νi and
transforms each element to �q bits. We combine those bits and
form a bit block bi = [bi1, bi2, . . . , bi�b ], where �b = n.�q and n
is the number of elements in νi. We apply a �r-bits cyclic redun-
dancy check (CRC) code on bi to detect errors at the receiver. By
merging the CRC coded resultant bits ri = [ri1, ri2, . . . , ri�r ],
we form mi = [biri] = [mi1,mi2, . . . ,mi�m ], where �m =
�b + �r. To correct the error induced by the wireless channel,
we apply error correction codes on mi and produce a �c-bits
code word ci = [ci1, ci2, . . . , ci�c ]with �c =

�m
ρc

, where ρc is the
rate of the error correction code. In this article, we investigate
the estimation performance by considering two different error
correction codes, which will be discussed in the following
subsections. We perform modulation on ci and transmit the
modulated signal. In this article, we perform binary phase shift
leying (BPSK) on ci and produce xi = [xi1, xi2, . . . , xi�c ]. The
received signal corresponds to the jth modulated symbol is
given by

yij = xij + κ (5)

whereκ is the additive white Gaussian noise with standard devia-
tion (s.d.) σ. Upon receiving the signal yi = [yi1, yi2, . . . , yi�c ],
the receiver performs the reverse process to reconstruct the
estimated version ofνi. In other words, the receiver performs the
following operations sequentially, e.g., demodulation, decoding,
CRC checking, and dequantization. Based on the estimated
noise, the receiver estimates the current state of the microgrid.
Details of the estimation technique are discussed in the next
section.

To encode bi, we consider the following two error correction
coding strategies: traditional block coding and delay-universal
coding. For the traditional block coding strategy, we consider
a traditional repeat accumulate (RA) code [24], while for the
delay-universal coding strategy, we consider a limited memory
delay-universal code [25], which is built on the regular RA code.
Both codes are described in the following subsections.

A. Repeat Accumulate (RA) Code

The RA code is a class of low-density parity-check (LDPC)
codes [26] that exhibits asymptotically capacity approaching
error correction performance, while offering low encoding and
decoding complexities [24]. The RA codes can be represented by
a connected bipartite graph, which consists of �c variable nodes
and �p check nodes. Variable nodes are further divided into two
types, namely message nodes and parity nodes of quantity of �m
and �p, respectively, such that �c = �m + �p. The code rate of
the RA code is defined by ρc =

�m
�c

. Each of the message nodes,
which represents each of the bits of mi, is connected with one
or more check nodes. Each of the parity nodes, which represents
each of the bits of pi, is connected with two consecutive check
nodes. Essentially, each of the check nodes satisfies that the
modulo-2 sum of all connecting variable nodes is zero. Note that

Fig. 3. Rate 1
2 regular RA code with (dm, dc) = (3, 3). In the figure, circles

and squares represent variable and check nodes, respectively. Among the circles,
filled circles represent message nodes, while empty circles represent parity
nodes.

the number of connections with each node is called the degree
of that node. An RA code is called a regular (dm, dc)-RA code,
if every message node and check node have exactly dm and dc
degrees, respectively. An example of a (dm, dc) = (3, 3)-regular
rate- 12 RA code is shown in Fig. 3.

Encoding: Due to the systematic nature of the RA code,
the message bits (i.e., mi) are embedded in the encoded out-
put. More precisely, the code word ci is formed by ci =
[mi1,mi2, . . . ,mi�m , pi1, pi2, . . . , pi�p ]. The value of the jth
parity node (i.e., pij) is determined by the modulo-2 sum of
pi(j−1) and all the message nodes connected to the jth check
node.

Decoding: RA code words can be decoded via message
passing iterative decoding [27], which offers good decoding
performance with low decoding complexity. As the name sug-
gests these algorithms are associated with passing messages
from variable nodes to check nodes and from check nodes to
variable nodes. The belief propagation algorithm is one of the
most prominent categories of message passing algorithms. In
the belief propagation algorithm, the messages passed between
the nodes are expressed as log-likelihood ratios (LLRs). For
a jth code word bit, the LLR obtained from the channel is
given by

γj = log
Pch(cj = 0|yj)
Pch(cj = 1|yj) (6)

where Pch(cj = 0|yj) and Pch(cj = 1|yj) represent the proba-
bilities that cj is 0 and 1, respectively, when the channel output

is yj . Let Γ(η)
c (v, u) be the outgoing LLR value from the check

node v to variable node u at iteration η, which is calculated
by [27]

Γ(η)
c (v, u) = 2 tanh−1

⎛⎝ ∏
u′∈Sv(v),u′ �=u

tanh

(
Γ
(η)
v (v, u′)

2

)⎞⎠
(7)

where Γ
(η)
v (v, u) be the outgoing LLR value from the variable

node v to check node u at iteration η, and Sv(u) is the set
of variable nodes that are connected with the uth check node.
Initially, we set Γ(η)

v (v, ·) = γj and Γ
(η)
v (v, u) is updated by the

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 06,2024 at 17:08:27 UTC from IEEE Xplore.  Restrictions apply. 



2180 IEEE SYSTEMS JOURNAL, VOL. 15, NO. 2, JUNE 2021

Fig. 4. Delay-universal code based on the regular RA code. The connection
probability between message node and check nodes are depicted via thickness
of the connected links, where higher thickness refers to higher connection
probability.

following equation:

Γ(η+1)
v (v, u) =

∑
v′∈Sc(u),v′ �=v

Γ(η)
c (v′, u) + γu (8)

where Sc(u) is the set of the check nodes that are connected
with the uth variable node. The aforementioned algorithm is
also known as the sum-product algorithm due to the sum and
product operations in (7) and (8), respectively. After a predefined
maximum iteration ηmax, the uth decoded bit is determined by

ĉu =

{
0, if

∑
n∈Sc(u)

Γ
(ηmax)
c (v, u) + ru ≥ 0

1, if
∑
n∈Sc(u)

Γ
(ηmax)
c (v, u) + ru < 0.

(9)

B. Delay-Universal Code Based on RA Code

Delay-universal codes (also known as anytime codes) are
shown to be suitable for tracking and controlling an unstable
plant over a noisy channel. A delay-universal code needs to have
the following communication requirements: causal encoding,
real-time decoding, and exponential decay of error probability
for a given code word. In this article, we construct the delay-
universal code by coupling the RA protographs (regular RA
code of small size). We construct the delay-universal code in the
following two steps:

1) by coupling standard (dm, dc)-regular RA protographs
such that each of the dm edges of a message node at the
position j is connected to the check nodes at positions
j to j + ψ, where ψ >> dm is the coupling length and
the connection probability follows an exponential distri-
bution;

2) by lifting and permuting the coupled protographs.
We consider �m as the lifting factor, i.e., each posi-

tion/protograph contains �m message nodes, dmdc �m check, and
parity nodes. Thus, the message and parity nodes at the position
i represent mi and pi, respectively. A delay-universal code
obtained from coupled RA protographs is shown in Fig. 4.

Encoding: The previously described delay-universal code
offers similar systematic encoding to that of the traditional
RA code. However, unlike the traditional RA code where the
generated parity bit block (for example, pi) solely depends on
the current message bit block (i.e.,mi), the delay-universal code
produces parity bits based on the current and previous

Fig. 5. Expanding window decoding of the delay-universal code.

ψ − 1 message bit blocks. For example, a parity bit block
pi results from the following encoding function pi =
fe(mi,mi−1, . . . ,mi−ψ). The encoding function performs the
modulo-2 sum of previous parity bit and all the message nodes
connected to the corresponding check node.

Decoding: The standard belief propagation decoding can be
applied to the decoding of the delay-universal code. In other
words, (6)–(9) can be used to decode the delay-universal code.
However, unlike the decoding of the traditional code where only
the received code word is fed into the decoder, the decoder in the
delay-universal code takes all the received code words as input,
and then, decodes all the received code words. Thus, the de-
coding process of the delay-universal code is like an expanding
window decoder, where the decoding window expands at every
time instant by including the received code word. An expanding
window decoder for the delay-universal code is shown in Fig. 5.

IV. PROPOSED STATE ESTIMATION TECHNIQUE

A. State Estimation With the RA Code

The state estimation technique with the traditional RA code
is straightforward. Let εi ∈ {0, 1} be the CRC decoded output
of message mi, where 0 indicates no error in the decoded code
word that contains mi and 1 indicates otherwise. Let ν̂s and
X̂s be the estimated version of νs and Xs, respectively, at the
receiver. With the RA code, the estimated state is given by

X̂s =

{
AτX̂s−1 + ν̂s−1, if εs−1 = 0

AτX̂s−1, otherwise.
(10)

Let d be the time steps required to transmit the bits from the
microgrid’s sensor system, which is defined byd = �tb

DRδt
, where

DR is the data rate [bits per seconds (bps)] of the communication
link and �tb is the total number of bits transmitted from the sensor
system at every sample interval. Considering the transmission
delay, the estimation of the current state is given by

X̂s+d = AdX̂s. (11)

B. Iterative State Estimation With Delay-Universal Code

For the delay-universal code, we propose an iterative state
estimation technique. As discussed in the earlier section, the
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Fig. 6. Estimation performance of the proposed scheme while varying the channel noise. (a) Estimation of converter’s current Ic. (b) Estimation of filter 1’s
current I1.

delay-universal code allows us to correct the errors in the
current as well as all the previously received code words. By
exploiting this characteristic, upon receiving the current message
(corresponds to current accumulated noise), we re-decode all
the previously received messages (corresponds to previously
accumulated noises). Based on the updated accumulated noises,
we also update the estimation of all the previous states. Then, the
current state is calculated from the updated previous states and
the current accumulated noise. The summary of the proposed
iterative state estimation technique is presented in Algorithm 1.
The notations used in the algorithm are defined in the following:

1) ν̂i(s) is the estimation of νi at the sampling instant s;
2) εi(s) indicates error in decoded codeword i at the sampling

instant s;
3) X̂i(s) is the estimation of Xi at the sampling instant s.
Hence, X̂s(s) is the estimation at the current sampling instant.

TABLE I
STATE SPACE PARAMETERS

V. RESULTS AND DISCUSSIONS

In this section, we present the performance evaluation of the
proposed communication frameworks by tracking the state of
the microgrid. The state-space parameters used in the simula-
tion are given in Table I. The parameters are chosen from the
experimental setup presented in [21]. The discretization step
δt is set to 0.0002 s. With this setup, we notice that A > 1,
i.e., the microgrid plant is unstable. We consider a 6-bit uniform
quantizer to quantize and transform the observed noise to binary
bits. For the CRC encoding, we consider a 4-bits CRC code,
specified by the polynomial x4 + x+ 1, which is one used
in many ITU-T standards. As the number of elements in the
observed microgrid’s state is six, the length of mi becomes
�m = 40. We construct the delay-universal code from a chain
of (dm, dc) = (4, 4) rate 1

2 RA protographs with ψ = 10. Thus,
the length of each encoded message ci becomes �c = 80.

For performance evaluation of the proposed (delay-universal)
scheme, we first consider a special case where the sensor system
samples the observation at every δt interval, i.e., s = k. We
also assume a very high-speed communication link that allows
us to neglect the transmission delay d. In Fig. 6, we present
the performance of the proposed communication and estimation
technique while tracking the currents of the converter and filter
1. We observe that the proposed scheme can closely estimate
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Fig. 7. Comparison of the estimation performance between the proposed and traditional scheme. (a) Estimation of filter 2’s current I2. (b) Estimation of converter’s
voltage Vc.

the currents over the noisy communication channel. We also
show the impact of the wireless channel’s noise on the track-
ing performance. We observe that the channel noise does not
have a significant impact on the tracking performance, while
a slight performance degradation is observed with increasing
channel noise. In Fig. 7, we present a tracking performance
comparison between the traditional regular RA code and the
proposed delay-universal code. For fair comparison, we consider
a (dm, dc) = (4, 4)-regular RA code for the traditional RA code.
We show the estimation of filter 2’s current and converter’s
voltage over the wireless channel with noise s.d. σ = 0.8. We
observe that the proposed scheme significantly outperforms the
traditional scheme, where the traditional scheme fails to track
the state in most of the time steps. With the proposed scheme,
the decoded error of previously received messages decays as
time progresses. On the other hand, with the traditional RA
code, the decoding error of a message does not change over
time. Fig. 8 shows the decoding error characteristics of the
delay-universal code and traditional RA code with two different
channel noises. As expected, we observe that the decoding error
gets fixed for the traditional RA code where higher decoding
error with larger channel noise. Compared to the traditional
scenario, although higher decoding error is initially observed
for the proposed scenario, the decoding error decays close to
zero as delay increases. Note that the nonzero decoding errors,
observed for both channel noises, result from the quantization
error.

Now we consider a limited rate communication link with
sampling interval larger than δt. We assume the data rate of
the communication link is 250 kb/s and set τ = 10, i.e., the
sensor system samples and transmits its disturbance observa-
tion at every 0.002 s. Along with the 80 encoded bits ci, we
consider 20 bits as header/overhead, which gives a data packet
of 100 bits at each transmission. Thus, the transmission time
becomes d = 0.0004. The estimation performance of the pro-
posed and traditional schemes are shown in Fig. 9. We observe

Fig. 8. Decoded error characteristics of the transmitted noise with respect to
delay.

that although initially, both schemes exhibit similar perfor-
mance, the proposed scheme significantly outperforms the tra-
ditional scheme with the increase of sampling instant. With the
traditional RA code, decoding errors propagate in the subsequent
estimations, and hence, we observe a growing estimation error
as the time progresses. On the other hand, the delay-universal
code can rectify the decoding error propagation by correcting
the previous stages errors. In Fig. 10, we present the impact of
the data rate of the communication link on the estimation error.
We present the absolute estimation error for 250 and 125 kb/s.
The transmission time for the later data rate is larger than the
former one. As larger transmission time may result in larger
variations in accumulated noises, we observe that the estimation
error with data rate 125 kb/s is slightly worse than that of
250 kb/s.
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Fig. 9. Comparison of the estimation performance between the proposed and traditional scheme with limited rate communication link. (a) Estimation of filter
2’s current I2. (b) Estimation of converter’s voltage Vc.

Fig. 10. Impact of data rate of the communication link on the estimation
performance.

VI. CONCLUSION

In this article, we have studied the state estimation of a
smart grids over an unreliable wireless network. A wireless IoT
network integrated communication framework is presented to
monitor the state of an unstable microgrid, which is an essential
part of a smart grid. To mitigate the error induced by the wireless
channel, we have proposed a delay-universal coding scheme in
the communication framework. An iterative estimation approach
is proposed to exploit the unique features of the delay-universal
coding scheme. Through numerical results, we have shown that
the proposed communication scheme (along with the proposed
estimation technique) is able to closely monitor the state of
any unstable microgrid. We have numerically evaluated the
impact of the wireless network’s parameters on the tracking
performances. We have also compared the performance of the

proposed scheme with the performance of a traditional block
coding scheme. We have shown that the traditional approach is
not sufficient to track the unstable microgrid and the proposed
scheme substantially outperforms the traditional approach in
terms of tracking performance.

REFERENCES

[1] L. Yu, T. Jiang, Y. Cao, and Q. Qi, “Carbon-aware energy cost minimization
for distributed internet data centers in smart microgrids,” IEEE Internet
Things J., vol. 1, no. 3, pp. 255–264, Jun. 2014.

[2] Y. Saleem, N. Crespi, M. H. Rehmani, and R. Copeland, “Internet of things-
aided smart grid: technologies, architectures, applications, prototypes, and
future research directions,” IEEE Access, vol. 7, pp. 62 962–63 003, 2019.

[3] M. M. Rana, W. Xiang, and E. Wang, “Smart grid state estimation and
stabilisation,” Int. J. Elect. Power Energy Syst., vol. 102, pp. 152–159,
Nov. 2018.

[4] M. Noor-A-Rahim, M. Khyam, X. Li, and D. Pesch, “Sensor fusion and
State estimation of IoT enabled wind energy conversion system,” Sensors,
vol. 19, no. 7, p. 1566, Apr. 2019.

[5] M. H. Cintuglu and D. Ishchenko, “Secure distributed state estimation for
networked microgrids,” IEEE Internet Things J., vol. 6, no. 5, pp. 8046–
8055, Oct. 2019.

[6] L. Xie, D.-H. Choi, S. Kar, and H. V. Poor, “Fully distributed state
estimation for wide-area monitoring systems,” IEEE Trans. Smart Grid,
vol. 3, no. 3, pp. 1154–1169, Sep. 2012.

[7] T. Van Cutsem, J. L. Horward, and M. Ribbens-Pavella, “A two-level static
state estimator for electric power systems,” IEEE Trans. Power App. Syst.,
vol. PAS-100, no. 8, pp. 3722–3732, Aug. 1981.

[8] T. Yang, H. Sun, and A. Bose, “Transition to a two-level linear state
estimator-Part I: Architecture,” IEEE Trans. Power Syst., vol. 26, no. 1,
pp. 46–53, Feb. 2011.

[9] T. Yang, H. Sun, and A. Bose, “Transition to a two-level linear state
estimator; Part II: Algorithm,” IEEE Trans. Power Syst., vol. 26, no. 1,
pp. 54–62, Feb. 2011.

[10] A. Gomez-Exposito, A. Abur, A. de la Villa Jaen, and C. Gomez-Quiles, “A
multilevel state estimation paradigm for smart grids,” Proc. IEEE, vol. 99,
no. 6, pp. 952–976, Jun. 2011.

[11] G. N. Korres, “A distributed multiarea state estimation,” IEEE Trans.
Power Syst., vol. 26, no. 1, pp. 73–84, 2010.

[12] A. Minot, Y. M. Lu, and N. Li, “A distributed Gauss-Newton method for
power system state estimation,” IEEE Trans. Power Syst., vol. 31, no. 5,
pp. 3804–3815, Nov. 2015.

[13] H. R. Hashemipour, S. Roy, and A. J. Laub, “Decentralized structures for
parallel Kalman filtering,” IEEE Trans. Autom. Control, vol. 33, no. 1,
pp. 88–94, Jan. 1988.

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 06,2024 at 17:08:27 UTC from IEEE Xplore.  Restrictions apply. 



2184 IEEE SYSTEMS JOURNAL, VOL. 15, NO. 2, JUNE 2021

[14] G. Rigatos, P. Siano, and N. Zervos, “A distributed state estimation
approach to condition monitoring of nonlinear electric power systems,”
Asian J. Control, vol. 15, no. 3, pp. 849–860, 2013.

[15] A. K. Singh and B. C. Pal, “Decentralized dynamic state estimation in
power systems using unscented transformation,” IEEE Trans. Power Syst.,
vol. 29, no. 2, pp. 794–804, Sep. 2013.

[16] P. Alriksson and A. Rantzer, “Distributed Kalman filtering using weighted
averaging,” in Proc. 17th Int. Symp. Math. Theory Netw. Syst., 2006,
pp. 2445–2450.

[17] A. K. Singh, R. Singh, and B. C. Pal, “Stability analysis of networked
control in smart grids,” IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 381–390,
May 2014.

[18] D. E. Quevedo and A. Ahlén, “A predictive power control scheme for
energy efficient state estimation via wireless sensor networks,” in Proc.
IEEE 47th Conf. Decis. Control, 2008, pp. 1103–1108.

[19] L. Hu, Z. Wang, I. Rahman, and X. Liu, “A constrained optimization
approach to dynamic state estimation for power systems including PMU
and missing measurements,” IEEE Trans. Control Syst. Techno., vol. 24,
no. 2, pp. 703–710, Jul. 2015.

[20] M. Karbalaye Zadeh, R. Gavagsaz-Ghoachani, S. Pierfederici, B. Nahid-
Mobarakeh, and M. Molinas, “Stability analysis and dynamic performance
evaluation of a power electronics-based DC distribution system with active
stabilizer,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 1,
pp. 93–102, Mar. 2016.

[21] P. Magne, B. Nahid-Mobarakeh, and S. Pierfederici, “Active stabilization
of DC microgrids without remote sensors for more electric aircraft,” IEEE
Trans. Ind. Appl., vol. 49, no. 5, pp. 2352–2360, Sep. 2013.

[22] R. L. Boylestad and L. Nashelsky, Electronic Devices and Circuit Theory,
10th ed. Upper Saddle River, NJ, USA: Prentice Hall, 2008.

[23] A. Sahai and S. Mitter, “The necessity and sufficiency of anytime capacity
for stabilization of a linear system over a noisy communication link-Part
I: Scalar systems,” IEEE Trans. Inf. Theory, vol. 52, no. 8, pp. 3369–3395,
Aug. 2006.

[24] S. ten Brink and G. Kramer, “Design of repeat-accumulate codes for
iterative detection and decoding,” IEEE Trans. Signal Process., vol. 51,
no. 11, pp. 2764–2772, Nov. 2003.

[25] M. Noor-A-Rahim, M. O. Khyam, Y. L. Guan, G. G. M. Nawaz Ali, K. D.
Nguyen, and G. Lechner, “Delay-universal channel coding with feedback,”
IEEE Access, vol. 6, pp. 37 918–37 931, 2018.

[26] M. Noor-A-Rahim, K. D. Nguyen, and G. Lechner, “Finite length analysis
of LDPC codes,” in Proc. IEEE Wireless Commun. Netw. Conf., 2014,
pp. 206–211.

[27] Sae-Young Chung, T. J. Richardson, R. L. Urbanke, S.-Y. Chung, T. J.
Richardson, and R. L. Urbanke, “Analysis of sum-product decoding of
low-density parity-check codes using a Gaussian approximation,” IEEE
Trans. Inf. Theory, vol. 47, no. 2, pp. 657–670, Feb. 2001.

Md. Noor-A-Rahim received the Ph.D. degree from
the Institute for Telecommunications Research, Uni-
versity of South Australia, Adelaide, Australia, in
2015.

He was a Postdoctoral Research Fellow with the
Centre for Infocomm Technology, Nanyang Tech-
nological University, Singapore. He is currently a
Senior Postdoctoral Researcher (MSCA Fellow) with
the School of Computer Science & IT, University
College Cork, Cork, Ireland. His research interests
include control over wireless networks, intelligent

transportation systems, machine learning, signal processing, and DNA-based
data storage.

Dr. Noor-A-Rahim was the recipient of the Michael Miller Medal from the
Institute for Telecommunications Research, University of South Australia, for
the most Outstanding Ph.D. Thesis in 2015.

Mohammad Omar Khyam received the Ph.D. de-
gree in electrical engineering from the University of
New South Wales, Sydney, Australia, in 2015.

He worked as a Postdoctoral Research Fellow
with the National University of Singapore, Singapore,
from 2016 to 2017, and Virginia Tech, Blacksburg,
VA, USA, from 2018 to 2019. He is currently working
as a Lecturer with Central Queensland University,
Rockhampton, Australia. His current research inter-
ests include signal processing, wireless communica-
tion, machine learning, and robotics.

Md. Apel Mahmud (Senior Member, IEEE) received
bachelor’s degree in electrical engineering with from
the Rajshahi University of Engineering and Technol-
ogy, Rajshahi, Bangladesh, in 2008, and the Ph.D.
degree in electrical engineering from the University
of New South Wales, Sydney, Australia, in 2012.

He is currently working as a Senior Lecturer
in electrical & renewable energy engineering with
Deakin University, Geelong, Australia. He has also
worked as a Lecturer in electrical & electronic engi-
neering with Deakin University and Swinburne Uni-

versity of Technology, as a Research Fellow with the University of Melbourne,
and as a Research Publication Fellow with the University of New South Wales.
His research interests include power system stability, control of power systems
including renewable energy sources as well as microgrids, energy management
for microgrids, energy storage systems, transactive energy (data analytics), and
nonlinear control theory.

Dr. Mahmud was the recipient of the Best Thesis Award from the University
of New South Wales, in 2012.

Md. Tanvir Ishtaique ul Huque received the mas-
ter’s degree in electrical engineering from the Uni-
versity of Sydney, Canberra, Australia, in 2014, and
the Ph.D. degree in electrical engineering from the
University of New South Wales (UNSW), Sydney,
Australia, in 2019.

He is a Research Fellow in cybersecurity with
Queensland University of Technology, Brisbane,
Australia. He was with the UNSW, Canberra, Data61-
CSIRO, Sydney, and the University of Helsinki,
Helsinki, Finland. He is actively working on projects

of critical infrastructure security.

Xinde Li (Senior Member, IEEE) received the Ph.D.
degree in control theory and control engineering from
the Huazhong University of Science and Technology,
Wuhan, China, in 2007.

After Ph.D., he joined the School of Automation,
Southeast University, Nanjing, China, where he is
currently a Professor and Ph.D. Supervisor. From
2012 to 2013, he was a Visiting Scholar with the
School of Interactive Computing, Georgia Institute of
Technology. In 2016, he was a Postdoc Research Fel-
low with the Department of Electrical and Computer

Engineering, National University of Singapore. His research interests include
information fusion, object recognition, computer vision, intelligent robot, and
human–robot interaction.

Dr. Li was the recipient of the Talent of Qing Lan Project Award of Jiangsu
province and a Six Major Top-Talent Plan Award of Jiangsu province, China.

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 06,2024 at 17:08:27 UTC from IEEE Xplore.  Restrictions apply. 



NOOR-A-RAHIM et al.: ROBUST AND REAL-TIME STATE ESTIMATION OF UNSTABLE MICROGRIDS 2185

Dirk Pesch (Senior Member, IEEE) received the
Dipl.Ing. degree from RWTH Aachen University,
Aachen, Germany, and the Ph.D. degree from the
University of Strathclyde, Glasgow, Scotland.

He is a Professor with the School of Computer Sci-
ence and Information Technology, University College
Cork, Cork, Ireland, and was previously the Head with
the Nimbus Research Centre, Cork Institute of Tech-
nology. He has more than 25 years research and de-
velopment experience in both industry and academia
and has (co-)authored more than 200 scientific articles

and book chapters. He is a Principle Investigator of the National Science
Foundation Ireland funded collaborative centres CONNECT (Future Networks)
and CONFIRM (Smart Manufacturing), and the Director of the SFI Centre for
Research Training in Advanced Networks for Sustainable Societies. He has
also been involved in a number of EU funded research projects on smart and
energy efficient buildings and urban neighborhoods, including as a Coordinator.
His research interests include problems associated with architecture, design,
algorithms, and performance evaluation of low power, dense, and vehicular
wireless/mobile networks and services for Internet of Things and cyberphysical
system’s applications in building management, smart connected communities,
independent living, and smart manufacturing.

Dr. Pesch serves as the Technical Programme Chair of the IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks 2020 and
the Executive Vice-Chair of IEEE International Conference on Communications
2020.

Amanullah M. T. Oo (Senior Member, IEEE) is
currently the Dean and the Head of the School of
Engineering, Deakin University, Geelong, Australia.
He is a Professor of electrical eEngineering and has
made significant research contributions in the area
of electrical power engineering and renewable en-
ergy, engineering education, and has authored and co-
authored more than 250 scholarly articles in the peer
reviewed high impact journals, books, and conference
proceedings. He has supervised more than 15 Ph.D.
students to completion and is currently supervising

several Ph.D. students in the area of electrical power engineering and renewable
energy engineering. He has led Deakin University 30 million Microgrid research
program. His research interests and expertise include microgrid & energy
storage system integration, smart grid communication, power system stability
and control, energy management and efficiency, protection and security of smart
grids, sustainable operation and control of microgrids as well as in engineering
education.

Prof. Maung has been actively working with several international and national
professional communities and industries. He is sought worldwide to deliver
keynote addresses and presentations at workshops and conferences.

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 06,2024 at 17:08:27 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


